1887

Abstract

SUMMARY

The main characteristics of the previously described proline-specific transport mechanism (permease) of were confirmed in strain 4. The same permease was responsible for entry of a number of proline analogues, including 3,4-dehydroproline, 4-methyleneproline, - and -4-chloroprolines, thiazolidine-4-carboxylic acid (thioproline) and the lower homologue, azetidine-2-carboxylic acid. These analogues also entered the cells by an exchange reaction between extracellular analogue and previously accumulated intracellular proline. Growth of the parent (4) strain was inhibited by 3,4-dehydroproline and azetidine-2-carboxylic acid, both of which were incorporated into cellular protein. Several classes of mutants, selected for resistance to either dehydroproline or azetidine, failed to incorporate one or both analogues into protein. Some of these mutants owed their resistance to failure to produce a functional proline permease. At least one strain, resistant to azetidine but not to dehydroproline, possessed an altered permease with little affinity for azetidine-2-carboxylic acid but still capable of transporting proline and 3,4-dehydroproline ; the permease of this strain could no longer promote exchange between intracellular proline and extracellular proline or proline analogues.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-50-1-121
1968-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/50/1/mic-50-1-121.html?itemId=/content/journal/micro/10.1099/00221287-50-1-121&mimeType=html&fmt=ahah

References

  1. Algranati I. D. 1963; Determination of initial rates in enzymic non-linear progress reactions. Biochim. biophys. Acta 73:152
    [Google Scholar]
  2. Baich A., Pierson D. J. 1965; Control of proline synthesis in Escherichia coli . Biochim. biophys. Acta 104:397
    [Google Scholar]
  3. Beerstecher E. 1950; Bacterial inhibition by a penicillin moiety. Proc. Soc. exp. Biol. Med 73200
    [Google Scholar]
  4. Britten R. J. 1965; The concentration of small molecules within the microbial cell. Symp. Soc. gen. Microbiol 1557
    [Google Scholar]
  5. Britten R. J., McClure F. T. 1962; The amino acid pool in Escherichia coli . Bact. Rev 26:292
    [Google Scholar]
  6. Cohen G. N., Kepes A. 1962; Permeation. In The Bacteria; a Treatise on Structure and Function Gunsalus I. C., Stanier R. Y. 4179 New York: Academic Press;
    [Google Scholar]
  7. Cohen G. N., Munier R. 1959; Effets des analogues structuraux d’amino acides sur la croissance, la synthèse de protéines et la synthèse d’enzymes chez Escherichia coli . Biochim. biophys. Acta 31:347
    [Google Scholar]
  8. Dixon M., Webb E. C. 1964 Enzymes, 2. London: Longmans;
    [Google Scholar]
  9. Dreyfuss J., Pardee A. B. 1966; Regulation of sulphate transport in Salmonella typhimurium . J. Bact 91:2275
    [Google Scholar]
  10. Echols H., Garen A., Garen S., Torriani A. M. 1961; Genetic control of repression of alkaline phosphatase in E. coli . J. molec. Biol 3:425
    [Google Scholar]
  11. Ferroluzzi-Ames G. 1964; Uptake of amino acids by Salmonella typhimurium . Archs Biochem. Biophys 104:1
    [Google Scholar]
  12. Fowden L., Lewis D., Tristram H. 1967; Toxic amino acids: their action as antimetabolites. Advauc, Enzymol 29:89
    [Google Scholar]
  13. Fowden L., Neale S., Tristram H. 1963; Effect of 3,4-dehydro-dl-proline on growth and protein synthesis. Nature, Lond 199:35
    [Google Scholar]
  14. Fowden L., Richmond M. H. 1963; Replacement of proline by azetidine-2-carboxylic acid during biosynthesis of protein. Biochem. biophys. Acta 71:459
    [Google Scholar]
  15. Gottlieb A. A., Fujita Y., Udenfriend S., Witkop B. 1965; Incorporation of cis- and trans-4-fiuoro-l-prolines into proteins and hydroxylation of the trans isomer during collagen biosynthesis. Biochemistry 4:2507
    [Google Scholar]
  16. Kempner E. S., Cowie D. B. 1960; Metabolic pools and the utilization of amino acid analogues for protein synthesis. Biochim. biophys. Acta 42:401
    [Google Scholar]
  17. Kessel D., Lubin M. 1962; Transport of proline in Escherichia coli . Biochim. biophys. Acta 57:32
    [Google Scholar]
  18. Lester G. 1966; Genetic control of amino acid permeability in Neurospora crassa . J. Bact 91:677
    [Google Scholar]
  19. Lubin M., Kessel D. H., Budreau A., Gross J. D. 1960; The isolation of bacterial mutants defective in amino acid transport. Biochim. biophys. Acta 42:535
    [Google Scholar]
  20. Mauger A. B., Witkop B. 1966; Analogues and homologues of proline and hydroxyproline. Chem. Rev 66:47
    [Google Scholar]
  21. Moyed H. S. 1964; Biochemical mechanisms of drug resistance. A. Rev. Microbiol 18:347
    [Google Scholar]
  22. Munier R., Cohen G. N. 1959; Incorporation d’analogues structuraux d’aminoacides dans les protéines bactériennes au cours de leur synthèse in vivo . Biochim. biophys. Acta 31:378
    [Google Scholar]
  23. Neale S., Tristram H. 1963; Effect of O-methyl-dl-threonine and O-methyl-dl-serine on growth and protein synthesis in Escherichia coli . J. Bact 86:1241
    [Google Scholar]
  24. Neale S., Tristram H. 1964; Incorporation of 3,4-dehydroproline into alkaline phosphatase of E. coli . 6th Int. Cong. Biochem Abstracts 4 121325
    [Google Scholar]
  25. Neale S., Tristram H. 1965; Loss of ability to concentrate proline in Escherichia coli : basis of resistance to proline analogues. J. gen. Microbiol 39:vii
    [Google Scholar]
  26. Peterson P. J., Fowden L. 1965; Purification, properties and comparative specificities of the enzyme prolyl-transfer ribonucleic acid synthetase from Phaseolus aureus Polygonatum multiflorum . Biochem. J 97:112
    [Google Scholar]
  27. Richmond M. H. 1962; The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev 26:398
    [Google Scholar]
  28. Richmond M. H. 1965; The enzymic basis of specific antibacterial action by structural analogues. Biol. Rev 40:93
    [Google Scholar]
  29. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1955; Studies of biosynthesis in Escherichia coli . Publs Carnegie Instn6071
    [Google Scholar]
  30. Schwartz J. H., Maas W. K., Simon E. J. 1959; An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to l-canavanine and d-serine. Biochim. biophys. Acta 32:582
    [Google Scholar]
  31. Shifrin S., Ames B. N., Ferroluzzi-Ames G. 1966; Effect of the α-hydrazino analogue of histidine on histidine transport and arginine synthesis. J. biol. Chem 241:3424
    [Google Scholar]
  32. Smith L. C., Ravel J. M., Skinner C. G., Shive W. 1962; 3-4-Dehydroproline, a proline antagonist. Archs Biochem. Biophys 99:60
    [Google Scholar]
  33. Strecker H. J. 1957; The interconversion of glutamic acid and proline. I. The formation of Δ1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli . J. biol. Chem 225:825
    [Google Scholar]
  34. Tristram H. 1960; The adaptive degradation of l-histidine by Paracolobactrum aerogenoides . J. gen. Microbiol 23:425
    [Google Scholar]
  35. Tristram H., Thurston C. F. 1966; Control of proline biosynthesis by proline and proline analogues. Nature, Lond 212:74
    [Google Scholar]
  36. Unger L., DeMoss R. D. 1966; Action of a proline analogue, l-thiazolidine-4-carboxylic acid, in Escherichia coli . J. Bact 91:1556
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-50-1-121
Loading
/content/journal/micro/10.1099/00221287-50-1-121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error