1887

Abstract

SUMMARY: The mechanism of propionic acid formation from lactate by is according to the scheme:

CO

lactate → pyruvate → cxaloacetate → malate → fimarate → succinate → propionate + CO

The evidence for this scheme is: () Washed suspensions of the organism grown on lactate attack, under anaerobic conditions, pynivate, oxalacetate, -malate. fumarate and suecinate, but -tartrate. () Organisms grown on -tartrate attack it and all the substances listed in () except lactate. () Succinie acid is quantitatively decarboxylated to propionic acid and carbon dioxide, () The amount of propionic acid produced from lactate is influenced by the CO concentration in the medium. () CO is fixed in the carboxyl group of propionic acid during fermentation of lactate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-5-2-326
1951-05-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/5/2/mic-5-2-326.html?itemId=/content/journal/micro/10.1099/00221287-5-2-326&mimeType=html&fmt=ahah

References

  1. Barker H. A. 1936; Fermentation of some dibasic C4 acids by Aerobacter aerogenes. Proc. Acad. Sci. Amst 39:1
    [Google Scholar]
  2. Barker H. A., Lipmann F. 1944; On lactic acid metabolism in propionic acid bacteria and the problem of oxido-reduction in the system fatty-hydroxy-keto acid. Arch. Biochem 4:361
    [Google Scholar]
  3. Barker H. A., Wikén I. 1948; The origin of butyric acid in fermentation of threonine by >Clostridium propionicum. Arch. Biochem 17:165
    [Google Scholar]
  4. Cardon B. P., Barker H. A. 1947; Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch. Biochem 12:165
    [Google Scholar]
  5. Carson S. F., Ruben S. 1940; Carbon dioxide assimilation by propionic acid bacteria studied by the use of radioactive carbon. Proc. nat. Acad. Sci., Wash 26:422
    [Google Scholar]
  6. Carson S. F., Foster J. W., Ruben S., Barker H. A. 1941; Radioactive carbon as an indicator of carbon dioxide utilization. V. Propionic acid bacteria. Proc. nat. Acad. Sci., Wash 27:229
    [Google Scholar]
  7. Elsden S. R. 1938; The effect of CO2 on the production of succinic acid by Bact. coli commune. Biochem. J 32:187
    [Google Scholar]
  8. Gale E. F. 1946; The bacterial amino-acid decarboxylases. Advances in Enzymology 6:1
    [Google Scholar]
  9. Johns A. T. 1949; The mechanism of propionic acid formation in bacterial fermentations. Nature; Lond: 164620
    [Google Scholar]
  10. Johns A. T. 1951; Isolation of a propionic acid producing bacterium from the rumen of sheep. J. gen. Microbiol 5:317
    [Google Scholar]
  11. Johnson M. J., Peterson W. H., Fred E. B. 1931; Oxidation and reduction relations between substrate and products in the acetone-butyl alcohol fermentation. J. biol. Chem 91:569
    [Google Scholar]
  12. Kalnitsky G., Werkman C. H. 1943; The anaerobic dissimilation of pyruvate by a cell-free extract of Esch. coli. Arch. Biochem 2:113
    [Google Scholar]
  13. Koepsell H. J., Johnson M. J., Meek J. S. 1944; Role of phosphate in pyruvic acid dissimilation by cell-free extracts of Clostridium butylicum. J. biol. Chem 154:535
    [Google Scholar]
  14. Krampitz O., Wood H. G., Werkman C. H. 1943; Enzymatic fixation of carbon dioxide in oxalacetate. J. biol. Chem 147:243
    [Google Scholar]
  15. Krebs H. A., Johnston W. A. 1937; Metabolism of ketonic acids in animal tissues. Biochem. J 31:645
    [Google Scholar]
  16. Krebs H. A. 1943; Carbon dioxide assimilation in heterotrophic organisms. Ann. Rev. Biochem 12:529
    [Google Scholar]
  17. Krebs H. A., Eggleston L. V. 1941; Biological synthesis of oxalacetic acid from pyruvic acid and carbon dioxide. 2. The mechanism of carbon dioxide fixation in propionic bacteria. Biochem. J 35:676
    [Google Scholar]
  18. Kubowitz F. 1934; Ueber die Hemmung der Buttersäuregärung durch Kohlenoxyd. Biochem. Z 274:285
    [Google Scholar]
  19. Pelczar M. J., Doetsch R. N. 1949; On the direct fermentation of maltose. Science 110:265
    [Google Scholar]
  20. Slade H. D., Werkman C. H. 1943; Assimilation of acetic and succinic acids containing heavy carbon by Aerobacter indologenes. Arch. Biochem 2:97
    [Google Scholar]
  21. Stephenson M., Strickland L. H. 1932; Hydrogenlyases, bacterial enzymes liberating molecular hydrogen. Biochem. J 26:712
    [Google Scholar]
  22. Stephenson M., Strickland L. H. 1933; Hydrogenlyases. III. Further experiments on the formation of formic hydrogenlyases by Bact. coli. Biochem. J 27:1528
    [Google Scholar]
  23. Stephenson M. 1939 Bacterial Metabolism, 2nd ed. London: Longmans, Green and Co;
    [Google Scholar]
  24. Utter M. F., Wood H. G. 1945; Fixation of CO2 in oxalacetate by pigeon liver. J. biol. Chem 160:375
    [Google Scholar]
  25. Werkman C. H., Wood H. G. 1942; Heterotrophic assimilation of carbon dioxide. Advanc. Enzymol 2:135
    [Google Scholar]
  26. Westerkamp H. 1933; Keto acids in blood and serum. Biochem. Z 263:239
    [Google Scholar]
  27. Wood H. G., Werkman C. H. 1940; The relationship of bacterial utilisation of CO2 to succinic acid formation. Biochem. J 34:129
    [Google Scholar]
  28. Wood H. G., Werkman C. H., Hemingway A., Nier A. O. 1940; Heavy carbon as a tracer in bacterial fixation of carbon dioxide. J. biol. Chem 135:789
    [Google Scholar]
  29. Wood H. G., Werkman C. H., Hemingway A., Nier A. O. 1941; Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J. biol. Chem 139:365
    [Google Scholar]
  30. Wood H. G., Werkman C. H., Hemingway A., Nier A. O., Stuckwisch C. G. 1941; Reliability of reactions used to locate assimilated carbon in propionic acid. J. Amer. chem. Soc 63:2140
    [Google Scholar]
  31. Woods D. D., Clifton C. E. 1937; Studies in metabolism of strict anaerobes (genus Clostridium). VI. Hydrogen production and amino-acid utilisation by Clostridium tetanomorphum. Biochem. J 31:1774
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-5-2-326
Loading
/content/journal/micro/10.1099/00221287-5-2-326
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error