1887

Abstract

SUMMARY

The lytic action of lysozyme upon walls was studied by following the disappearance of bacillary-colony-forming units and the appearance of L-colony-forming-units. The rapidity of cell wall removal by lysozyme fluctuated markedly during growth in a chemically defined medium, presumably because subtle changes in the cell wall were constantly occurring. When lysozyme-sensitive bacilli were grown with chloram-phenicol 10 g./ml. for 3 hr they showed a notable increase in lysozyme resistance; at the same time, their walls almost doubled in thickness. As lysozyme attack proceeded in a given culture, the bacilli passed first through a rod-shaped osmotically sensitive stage, and then a spherical stage characterized by incomplete removal of cell wall before finally reaching the naked protoplast stage. The spherical forms with adherent wall residues formed L colonies on a medium containing the reversion inhibitor D-methionine and bacillary colonies on the same medium without D-methionine. Under the latter conditions, the cell wall residue served as a starting point for rebuilding of complete wall, much as residual wall permits reversion of Gram-negative spheroplasts to the bacillary state. In the presence of methionine, the feedback sequence required for wall formation was severed, resulting in heritable propagation of the protoplast state.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-49-3-513
1967-12-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/49/3/mic-49-3-513.html?itemId=/content/journal/micro/10.1099/00221287-49-3-513&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J. Bact 81:741
    [Google Scholar]
  2. Archer L. J., Landman O. E. 1967; Transformation of unlinked loci in synchronized Bacillus subtilis cultures with chromosomes arrested at the origin. Bact. Proc52
    [Google Scholar]
  3. Charpak M., Dedonder R. 1965; Production d’un ‘facteur de competence’ soluble par B. subtilis Marburg ind-168. C. r. hebd. Séanc. Acad. Sci., Paris 260:5638
    [Google Scholar]
  4. Chung K. L., Hawirko R. Z., Isaac P. K. 1964; Cell wall replication. I. Cell wall growth of B. cereus and B. megaterium. Can. J. Microbiol 10:43
    [Google Scholar]
  5. Cole R. M. 1965; Bacterial cell wall replication followed by immunofluorescence. Bact. Rev 29:326
    [Google Scholar]
  6. Fitz-James P. C. 1967; The isolation of mesosomal vesicles extruded during protoplasting. In Microbiol Protoplasts, Spheroplasts and L-Forms Guze L. B. Baltimore: Williams and Wilkins;
    [Google Scholar]
  7. Hancock R. 1960; Accumulation of pool amino acids in Staphylococcus aureus following inhibition of protein synthesis. Biochim. biophys. Acta 37:47
    [Google Scholar]
  8. Hancock R., Park J. T. 1958; Cell wall synthesis by S. aureus in the presence of chloram- phenicol. Nature, Lond 181:1050
    [Google Scholar]
  9. Hash J. H., Davies M. C. 1962; Electron microscopy of Staphylococcus aureus treated with tetracycline. Science, N. Y 138:828
    [Google Scholar]
  10. Jensen R. H., Haas F. 1963; Electrokinetics and cell physiology. II. Relationship of surface change to onset of bacterial competence for genetic transformation. J. Bact 86:79
    [Google Scholar]
  11. Kellenberger E., Ryter A., Séchaud J. 1958; Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. biophys. biochem. Cytol 4:671
    [Google Scholar]
  12. King J. R., Gooder H. 1965; Subsequent growth as l-forms or streptococci of lysozyme- damaged group D streptococci. Bact. Proc58
    [Google Scholar]
  13. Landman O. E. 1967; Protoplasts, spheroplasts and l-forms viewed as a genetic system. In Microbiol Protoplasts, Spheroplasts and L-Forms Guze L. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  14. Landman O. E., Ginoza H. S. 1961; Genetic nature of stable l-forms of Salmonella paratyphi. J. Bact 81:875
    [Google Scholar]
  15. Landman O. E., Halle S. 1963; Enzymically and physically induced inheritance changes in Bacillus subtilis. J. molec. Biol 7:721
    [Google Scholar]
  16. Landman O. E., Altenbern R. A., Ginoza H. S. 1958; Quantitative conversion of cells and protoplasts of Proteus mirabilis and Escherichia coli to the l-form. J. Bact 75:567
    [Google Scholar]
  17. Luft J. H. 1961; Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol 9:409
    [Google Scholar]
  18. Martin H. H. 1966; Biochemistry of bacterial cell walls. A. Rev. Biochem 35:457
    [Google Scholar]
  19. Miller I. L., Landman O. E. 1965; The effect of chloramphenicol pretreatment of Bacillus subtilis on its cell wall and lysozyme spheres. Bad. Proc27
    [Google Scholar]
  20. Newton B. A. 1965; Mechanism of antibiotic action. A. Rev. Microbiol 19:209
    [Google Scholar]
  21. Pakula R., Walczac W. 1963; On the nature of competence of transformable Streptococci. J. gen. Microbiol 31:125
    [Google Scholar]
  22. Ryter A., Landman O. E. 1964; Electron microscope study of the relationship between mesosome loss and the stable l-state (or protoplast state) in Bacillus subtilis. J. Bact 88:457
    [Google Scholar]
  23. Ryter A., Landman O. E. 1967; Morphological study of the attachment of nucleoid to membrane in bacilli, protoplasts and reverting protoplasts of Bacillus subtilis. In Microbiol Protoplasts, Spheroplasts and L-Forms Guze B. Baltimore: Williams and Wilkins;
    [Google Scholar]
  24. Salton M. R. J. 1964 The Bacterial Cell Wall Amsterdam: Elsevier;
    [Google Scholar]
  25. Shockman G. D. 1965; Unbalanced cell wall synthesis: autolysis and cell-wall thickness. Bact. Rev 29:345
    [Google Scholar]
  26. Shockman G. D. 1967; The relationship of autolysin to lysozyme sensitivity of Streptococcus faecalis. In Microbial Protoplasts, Spheroplasts and L-Forms Guze B. L. Baltimore: Williams and Wilkins;
    [Google Scholar]
  27. Tomasz A., Beiser S. M. 1965; Relationship between the competence antigen and the competence-activator substance in Pneumococci. J. Bact 90:1226
    [Google Scholar]
  28. Tomasz A., Hotchkiss R. D. 1964; Regulation of the transformability of Pneumococcal cultures by macromolecular cell products. Proc. natn. Acad. SciU.S.A 51480
    [Google Scholar]
  29. Toennies G., Bakay B., Shockman G. D. 1955; Bacterial composition and growth phase. J. biol. Chem 234:3269
    [Google Scholar]
  30. Weidel W., Frank H., Martin H. H. 1960; The rigid layer of the cell wall of Escherichia coli strain b. J. gen. Microbiol 22:158
    [Google Scholar]
  31. Whitney J. G., Grula E. A. 1964; Incorporation of d-serine into the cell wall mucopeptide of Micrococcus lysodeikticus. Biochem. biophys. Res. Comm 14:375
    [Google Scholar]
  32. Young F. E. 1965; Variation in the chemical composition of the cell walls of Bacillus subtilis during growth in different media. Nature, Lond 207:104
    [Google Scholar]
  33. Young F. E. 1966; Autolytic enzyme associated with cell walls of Bacillus subtilis. J. biol. Chem 241:3462
    [Google Scholar]
  34. Young F. E. 1967; Competence in Bacillus subtilis transformation system. Nature, Lond 213:773
    [Google Scholar]
  35. Young F. E., Spizizen J., Crawford I. P. 1963; Biochemical aspects of competence in the Bacillus subtilis transformation system. I. Chemical composition of cell walls. J. biol. Chem 238:3119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-49-3-513
Loading
/content/journal/micro/10.1099/00221287-49-3-513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error