Arginine Synthesis in Free

Abstract

SUMMARY

Twenty-nine arginine auxotrophs of strain 13 have been divided into eight groups which represent different biochemical blocks in the arginine biosynthetic pathway. The mutants were classified according to their growth requirements, syntrophism, accumulation of intermediates and enzyme deficiencies. The steps in the pathway are the same as those of although mutants will not utilize --acetyl--ornithine or -acetyl--glutamate. However, these two substances were shown to be intermediates. Ornithine is synthesized via the linear route common to entero-bacteria and not by transacetylation between --acetyl--ornithine and -glutamate as in some other bacteria and yeasts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-49-2-325
1967-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/49/2/mic-49-2-325.html?itemId=/content/journal/micro/10.1099/00221287-49-2-325&mimeType=html&fmt=ahah

References

  1. Albrecht A. M., Scher W. I., Jun, Vogel H. J. 1962; Determination of aliphatic aldehydes by spectrophotometry. Anal. Chem 34:398
    [Google Scholar]
  2. Albrecht A. M., Vogel H. J. 1964; Acetyiornithine--transaminase. Partial purification and repression behaviour. J. biol. Chem 239:1872
    [Google Scholar]
  3. Baich A., Vogel H. J. 1962; N-Acetyl-γ-glutamokinase and N-acetylglutamic-γ-semialdebyde dehydrogenase: Repressible enzymes of arginine synthesis in Escherichia coli. Biochem. biophys. Res. Comm 7:491
    [Google Scholar]
  4. Baumberg S., Bacon D. F., Vogel H. J. 1965; Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc. natn. Acad. SciU.S.A 531029
    [Google Scholar]
  5. Beinert H., Green D. E., Hele P., Hift H., von Korff R. W., Ramakrishnan C. V. 1953; The acetate activating enzyme system of heart muscle. J. biol. Chem 203:35
    [Google Scholar]
  6. Bonner D. 1946; Production of biochemical mutations in Penicillium. Am. J. Bot 33:788
    [Google Scholar]
  7. Coetzee J. N., Sacks T. G. 1960a; Morphological variants of Proteus hauseri. J. gen. Microbiol 23:209
    [Google Scholar]
  8. Coetzee J. N., Sacks T. G. 1960b; Transduction of streptomycin resistance in Proteus mirabilis. J. gen. Microbiol 23:445
    [Google Scholar]
  9. Cohen G. N., Monod J. 1957; Bacterial permeases. Bact. Rev 21:169
    [Google Scholar]
  10. Demerec M., Bertani G., Flint J. 1951; A survey of chemicals for mutagenic action on Escherichia coli. Am. Nat 85:119
    [Google Scholar]
  11. Demerec M., Lahr E. L., Balbinder E., Miyake T., Ishidsu J., Mizobuchi K., Mahler B. 1960; Bacterial Genetics. Carneg. Instn. Yr. Bk 49:426
    [Google Scholar]
  12. Glansdorff N. 1965; Topography of co-transducible arginine mutations in Escherichia coli k-12. Genetics 51:167
    [Google Scholar]
  13. Glansdorff N., Sand G. 1965; Cordination of enzyme synthesis in the arginine pathway of Escherichia coli k 12. Biochim. biophys. Acta 108:308
    [Google Scholar]
  14. Gorini L. 1963; Symposium on multiple forms of enzymes and control mechanisms. III. Control by repression of a biochemical pathway. Bact. Rev 27:182
    [Google Scholar]
  15. Gorini L., Kaufman H. 1960; Selecting bacterial mutants by the penicillin method. Science 131:604
    [Google Scholar]
  16. Gorini L., Maas W. K. 1958 In A Symposium on the Chemical Basis of Development, Ed
    [Google Scholar]
  17. Gorini L., Gundersen W., Burger M. 1961; Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb. Symp. quant. Biol 26173 McElroy W. D., Glass B. 469 Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  18. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177:751
    [Google Scholar]
  19. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis. J. gen. Microbiol 46:47
    [Google Scholar]
  20. Hoare D. S., Hoare S. L. 1966; Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J. Bact 92:375
    [Google Scholar]
  21. Jones M. E. 1962; Carbamyl phosphate synthesis and utilization. Meth. Enzymol 5:903
    [Google Scholar]
  22. Jones M. E., Spector L., Lipmann F. 1955; Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Am. chem. Soc 77:819
    [Google Scholar]
  23. Lederberg J. 1946; Studies in bacterial genetics. J. Bact 52:503
    [Google Scholar]
  24. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  25. Lederberg J., Zinder N. 1948; Concentration of biochemical mutants of bacteria with penicillin. J. Am. chem. Soc 70:4267
    [Google Scholar]
  26. Maas W. K. 1961; Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb. Symp. quant. Biol 26:183
    [Google Scholar]
  27. Maré I. J., Coetzee J. N., de Klerk H. C. 1964; Agar electrophoresis of colicines with an Alcaligenes faecalis indicator strain. Nature, Lond 202:213
    [Google Scholar]
  28. Novick R. P., Maas W. K. 1961; Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J. Bact 81:236
    [Google Scholar]
  29. Prozesky O. W., Coetzee J. N. 1966; Linked transduction in Proteus mirabilis. Nature, Lond 209:1262
    [Google Scholar]
  30. Ratner S. 1955; Enzymatic synthesis of arginine (condensing and splitting enzymes). Meth. Enzymol 2:356
    [Google Scholar]
  31. Smith P. F. 1966; Comparative biosynthesis of ornithine and lysine by Mycoplasma and L forms. J. Bact 92:164
    [Google Scholar]
  32. Srb A. M., Fincham J. R. S., Bonner D. 1950; Evidence from gene mutations in Neurospora for close metabolic relationships among ornithine, proline and α-amino--hydroxyvaleric acid. Am. J. Bot 37:533
    [Google Scholar]
  33. Udaka S. 1966; Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bact 91:617
    [Google Scholar]
  34. Udaka S., Kinoshita S. 1958; Studies on l-ornithine fermentation. I. The biosynthetic pathway of l-ornithine in Micrococcus glutamicus. J. gen. appl. Microbiol 4:272
    [Google Scholar]
  35. Vogel H. J. 1953; Path of ornithine synthesis in Escherichia coli. Proc. natn. Acad. SciU.S.A 39578
    [Google Scholar]
  36. Vogel H. J. 1955 In A Symposium on Amino Acid Metabolism McElroy W. D., Glass H. B. 335 Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  37. Vogel H. J. 1960; Repression of an acetylornithine permeation system. Proc. natn. Acad. SciU.S.A 46488
    [Google Scholar]
  38. Vogel H. J. 1961; Aspects of repression in the regulation of enzyme synthesis: Pathway-wide control and enzyme-specific response. Cold Spring Harb. Symp. quant. Biol 26:163
    [Google Scholar]
  39. Vogel H. J., Bacon D. F. 1966; Gene aggregation: Evidence for a coming together of functionally related not closely linked genes. Proc. natn. Acad. SciU.S.A 551456
    [Google Scholar]
  40. Vogel H. J., Bonner M. 1956; Acetylornithinase of Escherichia coli: Partial purification and some properties. J. biol. Chem 218:97
    [Google Scholar]
  41. Vogel R. H., Vogel H. J. 1963; Acetylated intermediates of arginine synthesis in Bacillus subtilis. Biochim. biophys. Acta 69:174
    [Google Scholar]
  42. Vogel H. J., Bacon D. F., Baich A. 1963; Induction of acetylornithine δ-transaminase during pathway-wide repression. In Informational Macromolecules Vogel H. J., Bryson V., Lampen J. O. 293 New York: Academic Press;
    [Google Scholar]
  43. Vyas S., Maas W. K. 1963; Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Archs. Biochem. Biophys 100:542
    [Google Scholar]
  44. Winsten W. A., Eigen E. 1950; Bioautographic studies with use of Leuconostoc citrovorum., 8081. J. biol. Chem 184:155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-49-2-325
Loading
/content/journal/micro/10.1099/00221287-49-2-325
Loading

Data & Media loading...

Most cited Most Cited RSS feed