A Taxonomic Study of and Related Genera Free

Abstract

SUMMARY

A computer survey was made to find the relationships of 120 strains of Gram-negative or Gram-variable non-motile coccoid rods, isolated by the author and formerly called . They were compared with 75 named strains of various Gram-negative genera, on the basis of morphological properties and biochemical tests. A recently developed similarity coefficient was used and strains were sorted into phenons by single linkage. Most of the strains were grouped at 72·5% similarity into one large phenon. Strains outside this phenon were: (2), . (3), . (1), . (1), (1), (1), (1). These were differentiated from the 72·5-phenon by various combinations of the following characters which were nearly always negative for strains within the phenon: fermentative metabolism of sugars, pigmentation, production of reducing compounds from gluconate, alkalinity from arginine, hydrolysis of starch or proteins.

Within the 72·5-phenon, five smaller phenons were distinguished, most of them grouped at 82·5 % similarity. The strains in each of these phenons and the characters possessed by a majority of strains and useful for the differentiation of these phenons were:

were Gram-negative motile rods, usually peritrichous.

: sp. (2), (1), . (1). Acid was produced oxidatively from glycerol, sucrose, fructose, lactose, arabinose, xylose, galactose and glucose; HS produced in Kligler medium; the Kovacs oxidase test positive; nitrate reduced; growth on Simmons medium and on Paton medium; no growth on digest agar at 0° or 37°; not sensitive to 2·5 i.u. of penicillin.

: (3), . (1), . (1), . (1), sp. (2). Acid not produced from sugars; oxidase-positive; nitrate reduced; growth on Simmons medium; no growth on Paton medium; growth on digest agar at 37° but not at 0°; litmus milk became alkaline; not sensitive to 2·5 i.u. of penicillin.

, were Gram-negative coccoid rods, cocci or short rods, often in pairs.

: (or or ) (10), (2), sp. (8), (6), (1), MJT isolate (1). Acid not produced from glycerol, sucrose or fructose; oxidative acid production from lactose, arabinose, xylose, galactose and glucose; oxidase-negative; nitrate not reduced; growth on Simmons medium and on Paton medium; growth on digest agar at 37° but not at 0°; litmus milk became acid; not sensitive to 2·5 i.u. of penicillin.

: sp. (1), MJT isolates (22). Acid not produced from glycerol, sucrose or fructose; oxidative acid production from lactose, arabinose, xylose, galactose and glucose; oxidase-positive; nitrate reduced; no growth on Simmons or Paton media; growth on digest agar at 0° but not at 37°; no pH change in litmus milk; sensitive to 2·5 i.u. of penicillin.

: spp. (7), (1), (2), (4), sp. (2), (1), MJT isolates (93). Acid not produced from sugars; no growth on Simmons medium; growth on digest agar at 0° but not at 37°; no pH change in litmus milk; sensitive to 2·5 i.u. of penicillin. Other characters variable.

, , : small phenons grouped at about 92·5% similarity within Phenon 4. In properties other than sugar oxidation, Phenon 4i resembled Phenon 3, and Phenons 4ii and 4iii resembled Phenon 2, but not so closely.

The minimum inhibitory concentration of penicillin was estimated for selected strains of Phenons 2, 3 and 4, and varied from <0·1 to > 100 i.u./ ml. Strains of Phenons 3 and 4i were very sensitive, those of Phenons 2 and 4iii were resistant, and those of 4ii were intermediate or resistant. Ungrouped strains of Phenon 4 varied from very sensitive to resistant.

It was concluded, on the basis of these results and the data of Mandel & Thornley (1967) on DNA composition, that the non-motile coccoid rods in Phenons 2, 3 and 4 should be placed in a separate genus from other strains in the survey. Brisou & Prévot is the most suitable generic name, and strains in Phenon 2 correspond to the type species, . The relationships of Phenon 3 and the sub-divisions of Phenon 4 need further study, and it is not suggested that they should be given specific rank at present.

Phenons 2, 3 and 4 included strains formerly called and their classification as entails division of the genera and . The genus should be retained for strains resembling the motile, peritrichously flagellate type species, . , represented in this study in Phenon 5. It is suggested that the genus also should be reserved for any motile peritrichous strains which may prove suitable for inclusion. The few strains in this survey which had these properties were not very similar to each other, and the borderline between these strains and was not clear. The strain 15716, proposed as representative of the type species (Tulecke . 1965) was unlike all other strains in the survey; 15716 fermented sugars and contained a large proportion of Gram-positive cells, and may be closer to a Gram-positive genus than to those studied here.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-49-2-211
1967-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/49/2/mic-49-2-211.html?itemId=/content/journal/micro/10.1099/00221287-49-2-211&mimeType=html&fmt=ahah

References

  1. Abd-el-Malek Y., Gibson T. 1952; Studies in the bacteriology of milk. IV. The Gram-negative rods of milk. J. Dairy Res 19:294
    [Google Scholar]
  2. Aiken M. A., Ward M. K., King E. O. 1956; A study of a group of Gram-negative bacteria resembling the tribe Mimeae (De Bord). The Public Health Laboratory 14:5126
    [Google Scholar]
  3. Audureau A. 1940; Étude du genre Moraxella. Aimls Inst. Pasteur, Paris 64:126
    [Google Scholar]
  4. Ayres J. C., Ogilvy W. S., Stewart G. F. 1950; Post mortem changes in stored meats. I. Microorganisms associated with development of slime on eviscerated cut-up poultry. Fd Technol., Champaign 4:199
    [Google Scholar]
  5. Barnes E. M., Thornley M. J. 1966; The spoilage flora of eviscerated chickens stored at different temperatures. J. Fd Technol 1:111
    [Google Scholar]
  6. Beers R. J., Lockhart W. R. 1962; Experimental methods in computer taxonomy. J. gen. Microbiol 28:633
    [Google Scholar]
  7. Bergey’s Manual of Determinative Bacteriology 1923, 1st. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M. Baltimore: Williams and Wilkins;
  8. Bergey’s Manual of Determinative Bacteriology 1939, 5th. Bergey D. H., Breed R. S., Murray E. G. D., Hitchens A. P. Baltimore: Williams and Wilkins;
  9. Bergey’s Manual of Determinative Bacteriology 1957, 7th. Breed R. S., Murray E. G. D., Smith N. R. London: Bailliere, Tindall and Cox;
  10. Bernaerts M. J., De Ley J. 1963; A biochemical test for crown gall bacteria. Nature, Lond 197:406
    [Google Scholar]
  11. Billing E. 1955; Studies on a soap tolerant organism: a new variety of Bacterium anitratum. J. gen. Microbiol 13:252
    [Google Scholar]
  12. Board R. G. 1965; The properties and classification of the predominant bacteria in rotten eggs. J. appl. Bact 28:437
    [Google Scholar]
  13. Brisou J. 1957; Contribution a l’etude de la systématique des Pseudomenadaceae. Annls Inst. Pasteur, Paris 93:397
    [Google Scholar]
  14. Brisou J., Morichau-Beauchant R. 1952; Identité biochimique entre certaines souches de B. anitratum et Moraxella Iwoffi. Annls Inst. Pasteur, Paris 82:640
    [Google Scholar]
  15. Brisou J., Prévot A-R. 1954; Études de systematique bacterienne X. Revision des especes reunies dans le genre Achromobacter. Annls Inst. Pasteur, Paris 86:722
    [Google Scholar]
  16. Buttiaux R. 1961; Pseudomonas non pigmentes et Achromobacter. Annls Inst. Pasteur, Paris 100:643
    [Google Scholar]
  17. Castellani A., Chalmers A. J. 1919 Manual of Tropical Medicine, 3rd. London: Bailliere, Tindall and Cox;
    [Google Scholar]
  18. Catlin B. W. 1964; Reciprocal genetic transformation between Neisseria catarrhalis and Moraxella nonliquefaciens. J. gen. Microbiol 37:369
    [Google Scholar]
  19. Catlin B. W., Cunningham L. S. 1964a; Genetic transformation of Neisseria catarrhalis by deoxyribonucleate preparations having different average base compositions. J. gen. Microbiol 37:341
    [Google Scholar]
  20. Catlin B. W., Cunningham L. S. 1964b; Transforming activities and base composition of deoxyribonucleates from strains of Moraxella and Mima. J. gen. Microbiol 37:353
    [Google Scholar]
  21. Clarke P. H. 1953; Hydrogen sulphide production by bacteria. J. gen. Microbiol 8:397
    [Google Scholar]
  22. Courtieu A-L., Chassignol S., Longeray C. 1961; Caracteres bacteriologiques de 214 souches de Moraxella Iwoffi et de M. glucidolytica (Acinetobacter). Annls Inst. Pasteur, Paris 100:6116
    [Google Scholar]
  23. Cowan S. T. 1938; Unusual infections following cerebral operations. With a description of Diplococcus mucosus (von Lingelsheim). Lancet ii:1052
    [Google Scholar]
  24. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria Cambridge University Press;
    [Google Scholar]
  25. De Bord G. G. 1939; Organisms invalidating the diagnosis of gonorrhea by the smear method. J. Bact 38:119
    [Google Scholar]
  26. De Bord G. G. 1942; Descriptions of Mimeae trib. nov. with three genera and three species and two new species of Neisseria from conjunctivitis and vaginitis. Iowa St. Coll. J. Sci 16:471
    [Google Scholar]
  27. Deacon W. E. 1945; A note on the Tribe Mimeae (De Bord). J. Bact 49:511
    [Google Scholar]
  28. Eddy B. P. 1960; Cephalotrichous, fermentative Gram-negative bacteria: the genus Aeromonas. J. appl. Bact 23:216
    [Google Scholar]
  29. Eisenberg J. 1891 Bakteriologische Diagnostik, 3rd. Hamburg and Leipzig: Leopold Voss;
    [Google Scholar]
  30. Evans A. C. 1916; The bacteria of milk freshly drawn from normal udders. J. infect. Dis 18:437
    [Google Scholar]
  31. Ewing W. H. 1949; The relationship of Bacterium anitratum and members of the Tribe Mimeae (De Bord). J. Bact 57:659
    [Google Scholar]
  32. Ferguson W. W., Roberts L. F. 1950; A bacteriological and serological study of organism b5w (Bacterium anitratum). J. Bact 59:171
    [Google Scholar]
  33. Flamm H. 1956; Moraxella saccharolytica (sp. n.) aus dem Liquor eines Kindes mit Meningitis. Zentbl. Bakt. ParasitKde (Abt I. Orig.), 166:498
    [Google Scholar]
  34. Gardner G. A. 1965 Microbiological and biochemical changes in fresh meat during storage Ph.D. thesis, Belfast, Queen’s University;
    [Google Scholar]
  35. Hendrie M. S., Hodgkiss W., She wan J. M. 1964; Considerations on organisms of the Achro- mobacter–Alcaligenes group. Annls Inst. Pasteur, Lille 15:43
    [Google Scholar]
  36. Henriksen S. D. 1952; Moraxella: classification and taxonomy. J. gen. Microbiol 6:318
    [Google Scholar]
  37. Henriksen S. D. 1960; Moraxella. Some problems of taxonomy and nomenclature. Int. Bull. bact. Nomencl. Taxon 10:23
    [Google Scholar]
  38. Henriksen S. D. 1963; Mimeae. The standing in nomenclature of the names of this tribus and of its genera and species. Int. Bull. bact. Nomencl. Taxon 13:51
    [Google Scholar]
  39. Hill L. R., Turri M., Gilardi E., Silvestri L. G. 1961; Quantitative methods in the systematics of Actinomycetales II. G. Microbiol 9:56
    [Google Scholar]
  40. Holding A. J. 1960; The properties and classification of the predominant Gram-negative bacteria occurring in soil. J. appl. Bact 23:515
    [Google Scholar]
  41. Hugh R., Ikari P. 1964; The proposed neotype strain of Pseudomonas alcaligenes Monias 1928. Int. Bull. bact. Nomencl. Taxon 14:103
    [Google Scholar]
  42. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bact 66:24
    [Google Scholar]
  43. Ingram M., Shewan J. M. 1960; Introductory reflections on the Pseudomonas-Achromobacter group. J. appl. Bact 23:373
    [Google Scholar]
  44. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. clin. Med 44:301
    [Google Scholar]
  45. Klinge K. 1959; Zur Systematik von Bacterium anitratum, Diplococcus mucosus und Moraxella Iwoffi. Arch. Hyg. Bakt 143:587
    [Google Scholar]
  46. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, Loud 178:703
    [Google Scholar]
  47. Leifson E., Hugh R. 1954; Alcaligenes denitrificans n.sp. J. gen. Microbiol 11:512
    [Google Scholar]
  48. Lemoigne M., Girard H., Jacobelli G. 1952; Bacterie du sol utilisant facilement le 2–3 butanediol. Annls Inst. Pasteur, Paris 82:389
    [Google Scholar]
  49. Lingelsheim W. von. 1906; Die bakteriologischen Arbeiten der Kgl. Hygienischen Station zu Benthen O. Schl. wahrend der Genickstarre Epidemie in Oberschlesien im Winter 1904/5. Klin. Jb 15:373
    [Google Scholar]
  50. Lingelsheim W. von. 1908; Beiträge zur Ätiologie der epidemischen Genickstarre nach den Ergebnissen der letzten Jahre. Z. Hyg. Infekt-Krankh 59:457
    [Google Scholar]
  51. Long H. F., Hammer B. W. 1936; Studies on Alcaligenes viscosus. Iowa St. Coll. J. Sci 10:261
    [Google Scholar]
  52. Lwoff A. 1939; Revision et démembrement des Haemophilae, le genre Moraxella nov. gen. Annls Inst. Pasteur, Paris 62:168
    [Google Scholar]
  53. Lwoff A. 1964; Remarques sur les Moraxella. Annls Inst. Pasteur, Paris 106:483
    [Google Scholar]
  54. Mackie T. J., McCartney J. E. 1950 Handbook of Practical Bacteriology, 8th. Edinburgh: E. and S. Livingstone, Ltd;
    [Google Scholar]
  55. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. gen. Microbiol 43:273
    [Google Scholar]
  56. Moore H. B., Pickett M. J. 1960a; The Pseudomonas-Achromobacter group. Can. J. Microbiol 6:35
    [Google Scholar]
  57. Moore H. B., Pickett M. J. 1960b; Organisms resembling Alcaligenes faecalis. Can. J. Microbiol 6:43
    [Google Scholar]
  58. Murray R. G. E., Truant J. P. 1954; The morphology, cell structure and taxonomic affinities of the Moraxella. J. Bact 67:13
    [Google Scholar]
  59. Nagel C. W., Simpson K. L., Ng H., Vaughn R. H., Stewart C. F. 1960; Microorganisms associated with spoilage of refrigerated poultry. Fd. Technol., Champaign 14:21
    [Google Scholar]
  60. Nyberg C. 1935; Bacillus faecalis alcaligenes Petruschky. Zentbl. Bakt. ParasitKde (Abt I Orig.) 133:443
    [Google Scholar]
  61. Paton A. M. 1959; Enhancement of pigment production by Pseudomonas. Nature, Loud 184:1254
    [Google Scholar]
  62. Piéchaud M. 1961; Le groupe Moraxella. A propos des B5W-Bacterium anitratum. Annls Inst. Pasteur, Paris 100:674
    [Google Scholar]
  63. Piéchaud M. 1963; Mobilite chez les Moraxella. Annls Inst. Pasteur, Paris 104:291
    [Google Scholar]
  64. Piéchaud D., Piéchaud M., Second L. 1956; Variétés proteolytiques de Moraxella Iwoffi et de Moraxella glucidolytica (Bact. anitratum). Annls Inst. Pasteur, Paris 90:517
    [Google Scholar]
  65. Piéchaud D., Piéchaud M., Second L. 1951; Étude de 26 souches de Moraxella Iwoffi. Annls Inst. Pasteur, Paris 80:97
    [Google Scholar]
  66. Pintér M., Bende I. 1967; Computer analysis of Acinetobacter Iwoffi (Moraxella Iwoffi) and Acinetobacter anitratus (Moraxella glucidolytica) strains. J. gen. Microbiol 46:267
    [Google Scholar]
  67. Rhodes M. E. 1958; The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. J. gen. Microbiol 18:639
    [Google Scholar]
  68. Rosebury T. 1962 Microorganisms Indigenous to Man New York: McGraw-Hill;
    [Google Scholar]
  69. Ryter A., Kellenberger E. 1958; Étude au microscope electronique de plasmas contenant de l’acide desoxyribonucléique. Z. Naturforsch 136:597
    [Google Scholar]
  70. Ryter A., Piéchaud M. 1963; Étude au microscope électronique de quelques souches de Moraxella. Annls Inst. Pasteur, Paris 105:1071
    [Google Scholar]
  71. Schaub I., Hauber F. E. 1948; A biochemical and serological study of a group of identical Gram-negative bacilli from human sources. J. Bact 56:379
    [Google Scholar]
  72. Seeliger H. 1952/53; Zur Systematik des Bacterium anitratum (Schaub & Hauber). Zentbl. Bakt. ParasitKde (Abt. I Orig.) 159:173
    [Google Scholar]
  73. Shewan J. M., Hobbs G., Hodgkiss W. 1960; A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the Pseudomonadaceae. J. appl. Bact 23:379
    [Google Scholar]
  74. Shewan J. M., Hodgkiss W., Liston J. 1954; A method for the rapid differentiation of certain non-pathogenic asporogenous bacilli. Nature, Lond 173:208
    [Google Scholar]
  75. Simmons J. S. 1926; A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J. infect. Dis 39:209
    [Google Scholar]
  76. Skerman V. B. D., Carey B. J., MacRae I. C. 1958; The influence of oxygen on the reduction of nitrite by washed suspensions of adapted cells of Achromobacter liquefaciens. Can. J. Microbiol 4:243
    [Google Scholar]
  77. Smith R. R., Gordon R. E., Clark F. E. 1946; Aerobic mesophilic spore-forming bacteria. Misc. Publ. U.S. Dep. Agric559 Washington, D.C.:
    [Google Scholar]
  78. Sneath P. H. A. 1957; The application of computers to taxonomy. J. gen. Microbiol 17:201
    [Google Scholar]
  79. Sneath P. H. A. 1962; The construction of taxonomic groups. Symp. Soc. gen. Microbiol 12:289
    [Google Scholar]
  80. Sneath P. H. A., Sokal R. R. 1962; Numerical taxonomy. Nature, Lond., 193:855
    [Google Scholar]
  81. Sokal R. R., Sneath P. H. A. 1963 Principles of Numerical Taxonomy San Francisco and London: W. H. Freeman;
    [Google Scholar]
  82. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic Pseudomonads: a taxonomic study. J. gen. Microbiol 43:159
    [Google Scholar]
  83. Steel K. J., Cowan S. T. 1964; Le rattachement de Bacterium anitratum, Moraxella Iwoffi, Bacillus mallei et Haemophilus parapertussis au genre Acinetobacter Brisou et Prévot. Annls Inst. Pasteur, Paris 106:479
    [Google Scholar]
  84. Stenzel W., Mannheim W. 1963; On the classification and nomenclature of some nonmotile and coccoid diplobacteria, exhibiting the properties of Achromobacteriaceae. Int. Bull. bact. Nomencl. Taxon 13:195
    [Google Scholar]
  85. Stuart C. A., Formal S., McGann V. 1949; Further studies on B5W, an anaerogenic group in the Enterobacteriaceae. J. infect. Dis 84:235
    [Google Scholar]
  86. Sulzbacher W. L. 1950; Survival of microorganisms in frozen meat. Fd. Technol., Champaign 4:386
    [Google Scholar]
  87. Szybalski W. 1952; Gradient plate technique for study of bacterial resistance. Science 116:46
    [Google Scholar]
  88. Thibault P. 1961; A propos d’Alcaligenes faecalis. Annls Inst. Pasteur, Paris 100:659
    [Google Scholar]
  89. Thornley M. J. 1960a; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. appl. Bact 23:37
    [Google Scholar]
  90. Thornley M. J. 1960b; Computation of similarities between strains of Pseudomonas and Achro-mobacter isolated from chicken meat. J. appl. Bact 23:395
    [Google Scholar]
  91. Thornley M. J., Horne R. W. 1962; Electron microscope observations on the structure of fimbriae, with particular reference to Klebsiella strains, by the use of the negative staining technique. J. gen. Microbiol 28:51
    [Google Scholar]
  92. Thornley M. J., Ingram M., Barnes E. M. 1960; The effects of antibiotics and irradiation on the Pseudomonas-Achromobacter flora of chilled poultry. J. appl. Bact 23:487
    [Google Scholar]
  93. Trevisan V. 1885; Caratteri di alcuni nuovi generi di Batteriacee. Atti Accad. Fisio-Medico-Statistica, Milano, Ser. 4. 3:92
    [Google Scholar]
  94. Tulecke W., Orenski S. W., Taggart R., Colavito L. 1965; Isolation of an organism resembling Achromobacter liquefaciens. J. Bact 89:905
    [Google Scholar]
  95. Türck L. 1952; Zur Differenzierung der Bakterien der Alkaligenes Gruppe. Z. Hyg. InfektKrankh 134:300
    [Google Scholar]
  96. Véron M., Thibault P., Second L. 1959; Neisseria mucosa (Diplococcus mucosus Lingelsheim) I. Description bacteriologique et etude du pouvoir pathogene. Annls Inst. Pasteur, Paris 97:497
    [Google Scholar]
  97. Véron M., Thibault P., Second L. 1961; Neisseria mucosa Diplococcus mucosus Lingelsheim) II. Étude antigenique et classification. Annls Inst. Pasteur, Paris 100:166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-49-2-211
Loading
/content/journal/micro/10.1099/00221287-49-2-211
Loading

Data & Media loading...

Most cited Most Cited RSS feed