Anomalous Diffraction of Gram-positive Bacteria Free

Abstract

SUMMARY

Application of the anomalous diffraction theory of van de Hulst to turbidity measurements of Gram-positive bacteria is discussed. It is shown that this method is capable of detecting characteristic morphological changes during growth. Comparison with the cell mass method and direct observations of suggest that these changes are primarily related to cluster size. Initial application of the method in the study of osmotic change in is described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-49-1-13
1967-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/49/1/mic-49-1-13.html?itemId=/content/journal/micro/10.1099/00221287-49-1-13&mimeType=html&fmt=ahah

References

  1. Avi-Dor Y., Kuczynski M, Shatzberg G., Magar J. 1956; Turbidity changes in bacterial suspensions : kinetics and relation to metabolic state. J. gen. Microbiol 14:76
    [Google Scholar]
  2. Barer R., Joseph S. 1958; Concentration and mass measurements in microbiology. J. appl. Bact 21:146
    [Google Scholar]
  3. Barnes M. D., LaMer V. K. 1946; Monodispersed hydrophobic colloidal dispersions and light scattering properties. II. Total scattering from transmittance as a basis for calculation of particle size and concentration. J. Colloid Sci 1:79
    [Google Scholar]
  4. Fikhman B. A. 1963; Light scattering by bacteria in the visible region of the spectrum. Biofizika 8:380
    [Google Scholar]
  5. Fikhman B. A. 1964; Refractometry of Bacteria. Ph.D. Thesis Petukhov. 1965
    [Google Scholar]
  6. Heller W., Tabibian J. 1957; Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements. J. Colloid Sci 1225
    [Google Scholar]
  7. Heller W., Bhatnagar H. L., Nakagaki M. 1962; Theoretical investigations of the light scattering of spheres. XIII. The ‘wavelength exponent’ of differential turbidity spectra. J. chem. Phys 36:1163
    [Google Scholar]
  8. Van De Hulst H. C. 1946; Optics of spherical particles. Res. Astron. Obs. D’Utrecht 11:1
    [Google Scholar]
  9. Van De Hulst H. C. 1947; The solid particles in interstellar space. Res. Astron. Obs. D’Utrecht 11:2
    [Google Scholar]
  10. Van De Hulst H. C. 1962 Light Scattering by Small Particles New York: John Wiley and Sons;
    [Google Scholar]
  11. Jobst G. 1925; Diffuse Strahlung dielektrischen Kugeln im Grenzfalle, wenn das Kugelmaterial und umgebendes Medium fast gleiche Brechungsindices haben. Annln Phys 78:157
    [Google Scholar]
  12. Koch A. 1961; Some calculations on the turbidity of mitochondria and bacteria. Biochim. biophys. Acta 51:429
    [Google Scholar]
  13. Lewis P. C., Lothian G. F. 1954; Photoextinction measurements on spherical particles. Br. J. appl. Phys.Nottingham Conf. Suppl. C2
    [Google Scholar]
  14. Mie G. 1908; Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annln Phys 25:337
    [Google Scholar]
  15. Packer L., Perry M. 1961; Energy-linked light scattering changes in Escherichia coli . Archs Biochem. Biophys 95:379
    [Google Scholar]
  16. Pangonis W. J., Heller W., Jacobsen A. W. 1957 Tables of Light Scattering Functions Detroit: Wayne State University Press;
    [Google Scholar]
  17. Petukhov V. G. 1965; The possibility of applying the Mie theory to the scattering of light by suspensions of spherical bacteria. Biofizika 10:993
    [Google Scholar]
  18. Rogers D., Yu S. 1963; Turbidity changes during glucose permeation in Escherichia coli . J. Bact 85:1141
    [Google Scholar]
  19. Thimann K. V. 1964 The Life of Bacteria New York: MacMillan;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-49-1-13
Loading
/content/journal/micro/10.1099/00221287-49-1-13
Loading

Data & Media loading...

Most cited Most Cited RSS feed