1887

Abstract

SUMMARY: Chlorophyll formation in non-growing etiolated cells of var. is inhibited by certain antimetabolite analogues of purines, pyrimidines and amino acids. The inhibitory effects of bromo-and nitro-uracils were annulled by uracil and thymine; those of fluoro-and thio-urneils were not. Ethionine inhibition was completely annulled by methionine. All the base analogues were more inhibitory for the dark growth of the alga than in the light and an adaptation to these antimetabolites was apparent during growth. The growth inhibitory effects of some of these base analogues was annulled by several Krebs's cycle intermediates; the latter in themselves stimulated growth of photosynthesizing euglenas although they were not utilized in the dark with any degree of efficiency. Long-term exposure of non-proliferating euglenas, green or etiolated, to 5-fluoro-uracil had a profound effect on the chloroplast integrity of the organisms. Such euglenas on further subculture in an adequate growth medium were permanently bleached. The effect of 5-bromo-uracil, though similar, was less marked.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-48-2-283
1967-08-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/48/2/mic-48-2-283.html?itemId=/content/journal/micro/10.1099/00221287-48-2-283&mimeType=html&fmt=ahah

References

  1. Aaronson S., Bensky B. 1962; O-Methylthreonine, a new bleaching agent for Euglena gracilis. J. gen. Microbiol. 27:75
    [Google Scholar]
  2. Brawerman G., Chargaff E. 1959a; Changes in protein and ribonucleic acid during the formation of chloroplasts in Euglena gracilis. Biochim.biophys. Acta 31:164
    [Google Scholar]
  3. Brawerman G., Chargaff E. 1959b; Factors involved in the development of chloroplasts in Euglena gracilis. Biochim.biophys. Acta 31:178
    [Google Scholar]
  4. Brawerman G., Eeenstadt J. M. 1964; Deoxyribonucleic acid from the chloroplasts of Euglena gracilis. Biochim.biophys. Acta 91:477
    [Google Scholar]
  5. Brawerman G., Konigsberg N. 1960; On the formation of the TPN requiring glyceraldehyde-3-phosphate dehydrogenase during the production of chloroplasts in Euglena gracilis. Biochim.biophys. Acta 43:374
    [Google Scholar]
  6. Brawerman G., Pogo A. O., Chargaff E. 1962; Induced formation of ribonucleic acids and plastid protein in Euglena gracilis under the influence of light. Biochim.biophys. Acta 55:326
    [Google Scholar]
  7. Coelho J., Rege D. V. 1963; On hemoglobin inhibition of the growth of Euglena gracilis. J. Protozool. 10:473
    [Google Scholar]
  8. Danforth W. F. 1953; Oxidative metabolism of Euglena. Arch. Biochem. 46:164
    [Google Scholar]
  9. Dubash P. J., Rege D. V. 1967; Permanent bleaching of Euglena by Mga+ starvation. Biochim.biophys. Acta 136:185
    [Google Scholar]
  10. Ebringer L. 1962; Erythromycin induced bleaching of Euglena gracilis. J. Protozool. 9:373
    [Google Scholar]
  11. Edelman M., Cowan C. A., Epstein H. T., Schiff J. A. 1964; Chloroplast development in Euglena. VIII. Chloroplast associated DNA. Proc. natn.Acad. Sci., U.S.A. 52:1214
    [Google Scholar]
  12. Edelman M., Schiff J. A., Epstein H. T. 1965; Chloroplast development in Euglena. XII. Two types of satellite DNA. J. molec.Biol. 11:769
    [Google Scholar]
  13. Fuller R. C., Gibbs M. 1959; Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and d-glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 34:324
    [Google Scholar]
  14. Gibson K. D., Neuberger A., Tait G. H. 1962a; Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonasspheroides. Biochem. J. 83:539
    [Google Scholar]
  15. Gibson K. D., Neuberger A., Tait G. H. 1962b; Studies on the biosynthesis of porphyrin and bacteriochlorophyll by R. spheroides. 2. The effects of ethionine and threonine. Biochem. J. 83:550
    [Google Scholar]
  16. Gross J. A., Jahn T. L., Bernstein E. 1955; The effect of antihistamines on the pigments of green protista. J. Protozool. 2:71
    [Google Scholar]
  17. Heidelberger C. 1963; Biochemical mechanisms of action of fluorinated pyrimidines. Exp. cell Res. Suppl. 9:462
    [Google Scholar]
  18. Hutner S. H., Bach M. K., Ross G. I. M. 1956; A sugar-containing basal medium for vitamin B12-assay with Euglena: application to body fluids. J. Protozool. 3:101
    [Google Scholar]
  19. Hutner S. H., Provasoli L., Schatz A., Haskins C. 1950; Some approaches to the study of the role of metals in the metabolism of micro-organisms. Proc. Am. Phil. Soc. 94:152
    [Google Scholar]
  20. Jirovec O. 1949; UeinekantibiotiknanfckterSprvoky. Mem.Soc. zool. tchecosl. 13:216
    [Google Scholar]
  21. Kirk J. T. O. 1962; Effect of streptomycin on greening and biosynthesis in Euglena gracilis. Biochim.biophys. Acta 56:139
    [Google Scholar]
  22. Leff J., Mandel M., Epstein H. T., Schiff J. A. 1963; DNA satellites from cells of green and aplastidic algae. Biochem.biophys. Res. Communs. 13:126
    [Google Scholar]
  23. Lyman H., Epstein H. T., Schiff J. A. 1961; Studies of chloroplast development in Euglena. I. Inactivation of green colony formation by u.v.-light. Biochim.biophys. Acta 50:301
    [Google Scholar]
  24. Mankodi B. S. 1964 Studies in nucleotide metabolism in micro-organisms. Ph.D. (Tech.) Thesis University of Bombay;
    [Google Scholar]
  25. McCalla D. R. 1962; Chloroplasts of Euglena gracilis affected by furadantin. Science 137:225
    [Google Scholar]
  26. McCalla D. R., Allan R. K. 1964; Effect of actinomycin D on Euglena chloroplast formation. Nature, Lond. 201:504
    [Google Scholar]
  27. Nakada D., Magasanik B. 1964; The roles of inducer and cataboliterepressor in the synthesis of β-galactosidase by Escherichia coli. J. molec.Biol. 8:105
    [Google Scholar]
  28. Pogo A. O., Brawerman G., Chargaff E. 1962; New ribonucleic acid species associated with the formation of the photosynthetic apparatus in Euglena gracilis. Biochemistry 1:128
    [Google Scholar]
  29. Provasoli L., Hutner S. H., Pintner I. J. 1951; Destruction of chloroplasts by streptomycin. Cold Spr. Harb.Symp.quant. Biol. 16:113
    [Google Scholar]
  30. Provasoli L., Hutner S. H., Schatz A. 1948; Streptomycin-induced chlorophyll-less races of Euglena. Proc. Soc. exp. Biol. Med. 69:279
    [Google Scholar]
  31. Pringsheim E. G. 1958; Die Apoplastidiebei Euglena. Rev. Algol. 4:41
    [Google Scholar]
  32. Pringsheim E. G., Pringsheim O. 1952; Experimental elimination of chromatophores and eye-spot in Euglena gracilis. New Phytol. 51:65
    [Google Scholar]
  33. Ray D. S. 1965; Isolation and physical characterization of the principal and satellite DNAs of Euglena gracilis. Disser.Abstr. 25:6205
    [Google Scholar]
  34. Ray D. S., Hanawalt P. C. 1964; Properties of the satellite DNA associated with the chloroplasts of Euglena gracilis. J. molec.Biol. 9:812
    [Google Scholar]
  35. Ray D. S., Hanawalt P. C. 1965; Satellite DNA components in Euglena gracilis cells lacking chloroplasts. J. molec.Biol. 11:760
    [Google Scholar]
  36. Scher S., Collinge J.C. 1965; Chloroplast replication: Evidence for 5-bromo-uracil incorporation and plastid mutation in Euglena gracilis. Nature, Lond. 205:828
    [Google Scholar]
  37. Schiff J. A., Lyman H., Epstein H. T. 1961; Studies of chloroplast development in Euglena.II Photoreversal of the UV inhibition of green colony formation. Biochim.biophys. Acta 50:310
    [Google Scholar]
  38. Zahalsky,A. C., Hutner S. H., Keane M., Burger R. M. 1962; Bleaching Euglena graciliswith antihistamines and streptomycin-type antibiotics. Arch. Mikrobiol. 42:46
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-48-2-283
Loading
/content/journal/micro/10.1099/00221287-48-2-283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error