1887

Abstract

SUMMARY: As conidia of aged, the activity of NADP-specific glutamic acid dehydrogenase (NADP-GDH) decreased to negligible values. Subsequent to this decrease, a significant increase occurred in the activity of the NAD-specific glutamic acid dehydrogenase (NAD-GDH). Incubation of aged conidia in basal medium resulted in over a 100-fold increase in NADP-GDH activity within 3 hr. Although no net protein synthesis occurred during these early stages of germination, a turnover in protein was observed. The data presented are consistent with synthesis of NADP-GDH. Development of NADP-GDH activity was dependent upon an appropriate carbon source and pH value. An exogenous nitrogen source was not required. The data do not directly support reciprocal regulation of the synthesis of NAD-GDH and NADP-GDH in Neurospora as postulated by Sanwal & Lata (1962a, b).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-48-2-235
1967-08-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/48/2/mic-48-2-235.html?itemId=/content/journal/micro/10.1099/00221287-48-2-235&mimeType=html&fmt=ahah

References

  1. Barratt R. W. 1963; Effect of environmental conditions on the NADP-specific glutamic acid dehydrogenase in Neurosporacrassa.. J. gen. Microbiol. 33:33
    [Google Scholar]
  2. Barratt R. W., Strickland W. N. 1963; Purification and characterization of a TPN-specific glutamic acid dehydrogenase from Neurosporacrassa. Archs Biochem. Biophys. 102:66
    [Google Scholar]
  3. Barratt R. W., Tuveson R.W., West D. J. 1966; NADP-glutamic acid dehydrogenase (NADP-GKN) and NAD-glutamic acid dehydrogenase (NAD-GDN) activities in wild-type resting and germinating conidia of Neurospora. Genetics 54:320 (Abstr.)
    [Google Scholar]
  4. Beadle G. W., Tatum E. L. 1945; Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Am. J. Bot. 32:678
    [Google Scholar]
  5. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Meth.Enzymol.1
    [Google Scholar]
  6. Haidle C. W., Storck R. 1966; Inhibition by cycloheximide of protein and RNA synthesis in Mucorrouxii. Biochem.biophys. Res. Comm. 22:175
    [Google Scholar]
  7. Horowitz N. H. 1965; Evidence for common control of tyrosinase and L-amino acid oxidase in Neurospora. Biochem.biophys. Res. Comm. 18:686
    [Google Scholar]
  8. Horowitz N. H., Fling M., Macleod H. L., Watanabe Y. 1961; Structural and regulative genes controlling tyrosinase synthesis in Neurospora. Cold Spr. Harb.Symp. Quant. Biol. 26:233
    [Google Scholar]
  9. Jacob F., Monod J. 1961; Genetic regulatory mechanisms in the synthesis of proteins. J. molec.Biol. 3:318
    [Google Scholar]
  10. Klingmuller W. 1963; A damaging effect of drying on Neurosporacrassa conidia and its reversibility. Z. Naturforsch. 18:55
    [Google Scholar]
  11. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. biol. Chem. 193:265
    [Google Scholar]
  12. Mans R. J., Novelli G. D. 1961; Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. ArchsBiochem. Biophys. 94:48
    [Google Scholar]
  13. Munkres K. D. 1965; An assay procedure for Neurospora malate dehydrogenase. Neurospora Newsletter 8:19
    [Google Scholar]
  14. Pall M. L. 1966; The use of cycloheximide as an inhibitor of protein synthesis in Neurospora. Neurospora Newsletter 9:16
    [Google Scholar]
  15. Ryan F. J. 1948; The germination of conidia from biochemical mutants of Neurospora. Am. J. Bot. 35:497
    [Google Scholar]
  16. Ryan F. J., Beadle G. W., Tatum E. L. 1943; The tube method of measuring the growth rate of Neurospora. Am. J. Bot. 30:784
    [Google Scholar]
  17. Sanwal B. D., Lata M. 1962a; Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora. Biochem.biophys. Res. Comm. 6:404
    [Google Scholar]
  18. Sanwal B. D., Lata M. 1962b; Concurrent regulation of glutamic acid dehydrogenases of Neurospora. ArchsBiochem. Biophys. 97:582
    [Google Scholar]
  19. Stine G. J. 1966; NADP-and NAD-dependent glutamic dehydrogenases, succinic dehydrogenase and NADase activities during the asexual cycle of Neurosporacrassa.. Ph.D. thesis University of Delaware; Newark, Delaware:
    [Google Scholar]
  20. Turian G. 1961; L’ac6tate et son double effetd’inductionisocitratasique et de differentiation conidienne chez les Neurospora. C. r. hebd.Seanc. Acad. Sci., Paris 252:1374
    [Google Scholar]
  21. Turian G. 1963; Sur le mdcanisme de l’inductionisocitratasique chez AllomycesetNeurospora. Path.Microbiol. 26:553
    [Google Scholar]
  22. Turian G., Seydoux J., Volkmann D. 1962; Activit6 isocitratasiqueet type de sporulation chez Neurosporatetrasperma et chez N. sitophila,souchenormale et mutant microconidien. Path.Microbiol. 25:737
    [Google Scholar]
  23. Vogel H. J. 1956; A convenient growth medium for Neurospora. Microbiol.Genet. Bull. 13:42
    [Google Scholar]
  24. Wainwright S. D. 1959; On the development of increased tryptophan synthetase activity by cell free extracts of Neurosporacrassa. Can. J. Biochem.Physiol. 37:1417
    [Google Scholar]
  25. West D. J., Tuveson R. W., Barratt R. W. 1966; Allosteric interactions in NADP-glutamic acid dehydrogenase (NADP-GDH) from wild type Neurospora. Genetics 54:368 (Abstr.)
    [Google Scholar]
  26. West D. J., Tuveson R. W., Barratt R. W., Fincham J. R. S. 1967; Allosteric effects in nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Neurospora. J. bial.Chem. 242:9 (in press)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-48-2-235
Loading
/content/journal/micro/10.1099/00221287-48-2-235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error