Full text loading...
Abstract
Mutants of Pseudomonas aeruginosa strain 8602 were isolated which were unable to produce an aliphatic amidase (acylamide amidohydrolase, EC 3.5.1.4) and could not grow on acetamide as a carbon or nitrogen source. Amidase-constitutive mutants, producing amidase in the absence of inducing amides, were isolated by selection on succinate+formamide agar. Sixteen mutants were magno-constitutive non-inducible mutants producing amidase at about the same rate or greater than the fully induced wild-type strain. Amidase synthesis in one magno-constitutive mutant was repressed by the non-substrate inducer N-acetylacetamide, but the others were not affected in any way. Six mutants were semi-constitutive, producing amidase at 10–50% of the rate of the magno-constitutive mutants and were induced by N-acetylacetamide. Most of the constitutive mutants were very sensitive to catabolite repression by succinate in pyruvate medium, but succinate produced only partial repression of one magno-constitutive mutant and three semi-constitutive mutants; one semi-constitutive mutant was not repressed except in the presence of inducer.
Six mutants isolated from succinate + formamide agar had altered inducer specificity and were induced to form amidase by formamide, which is a very poor inducer for the wild-type strain. The formamide-inducible mutants were also sensitive to catabolite repression by succinate although one mutant was only partially repressed.
Phage F 116 was used to transduce the amidase structural and regulator genes. In crosses between constitutive mutants of Pseudomonas aeruginosa as donors and amidase-negative mutants as recipients, the two characters were co-transduced with frequencies of 80–100%. Similarly, in crosses between formamide-inducible and amidase-negative mutants these two characters were co-transduced with frequencies of 89–96%. The amidase structural and regulator genes are considered to be closely linked.
- Accepted:
- Published Online: