1887

Abstract

SUMMARY

The motility of was measured in capillary tubes by determining the distribution of bacteria throughout the tube (the complete assay) or simply by locating the point of furthest advance of the bacteria—the frontier of the migration (the frontier assay). The diffusion of C-glucose was similarly measured in capillary tubes by determining the distribution of radioactivity throughout the tube. The diffusion of glucose under the conditions used was correctly described by the known diffusion equation. The method gives a measure of the net forward velocity of the bacteria. Interpretations, advantages and disadvantages of these assays are given. The method also gives a measure of the degree of randomness of the motility. When chemotaxis is taking place, a very high proportion of the bacteria leave the origin and migrate as a band. When bands are not allowed to form, by omitting methionine, the motility of the bacteria qualitatively resembled a random process, such as the diffusion of glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-46-2-161
1967-02-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/46/2/mic-46-2-161.html?itemId=/content/journal/micro/10.1099/00221287-46-2-161&mimeType=html&fmt=ahah

References

  1. Adler J. 1966a; Chemotaxis in bacteria. Science, N. Y 153:708
    [Google Scholar]
  2. Adler J. 1966b; The effect of amino acids and oxygen on chemotaxis in Escherichia coli . J. Bact 92:121
    [Google Scholar]
  3. Adler J., Templeton B. 1967; The effect of environmental conditions on the motility of Escherichia coli. J. gen. Microbiol 46:175
    [Google Scholar]
  4. Baracchini O., Sherris J. C. 1959; The chemotactic effect of oxygen on bacteria. J. Path. Bact 77:565
    [Google Scholar]
  5. Clowes R. C., Furness G., Rowley D. 1955; The measurement of speeds of motility in Escherichia coli. J. gen. Microbiol 13:i
    [Google Scholar]
  6. Gabritschewsky G. 1900; Über active Beweglichkeit der Bakterien. Z. Hyg. InfektKrankh 35:104
    [Google Scholar]
  7. Gladden J. K., Dole M. 1953; Diffusion in super-saturated solutions. II. Glucose solutions. J. Am. chem. Soc 75:3900
    [Google Scholar]
  8. Kaiser A. D., Hogness D. S. 1960; The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage Adg. J. molec. Biol 2:392
    [Google Scholar]
  9. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res 3:5
    [Google Scholar]
  10. Liachowetzky M. 1910–11; Eine neue Methode zum Studium der lokomotorischen Funktion der Bakterien. Zentbl. Bakt. ParasitKde, I Abt. Orig. 57:180
    [Google Scholar]
  11. Ljunggren S., Lamm O. 1957; Diffusion from a bottom layer; diffusion with moving boundaries. Acta chem. scand 11:340
    [Google Scholar]
  12. Ogiuti K. 1936; Untersuchungen uber die Geschwindigkeit der Eigenbewegung von Bakterien. Jap. J. exp. Med 14:19
    [Google Scholar]
  13. Sherris J. C., Preston N. W., Shoesmith J. G. 1957; The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. J. gen. Microbiol 16:86
    [Google Scholar]
  14. Shoesmith J. G. 1960; The measurement of bacterial motility. J. gen. Microbiol 22:528
    [Google Scholar]
  15. Weibull C. 1960; Movement. In The Bacteria Gunsalus I. C., Stanier R. Y. 1153 New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-46-2-161
Loading
/content/journal/micro/10.1099/00221287-46-2-161
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error