1887

Abstract

SUMMARY

The ability of suspensions of washed spores of to oxidize triglycerides was markedly stimulated by -proline, -alanine and -serine, although all the sources of nitrogen tested were effective over extended periods to different degrees. The rate of oxidation was further increased by the addition of certain sugars, although these were without effect in the absence of a nitrogen source. The same compounds that stimulated methylketone formation from triglycerides also promoted the rapid germination of spores, suggesting that common reactions were involved. The maximum yield of methylketone obtained was 25 % from trioctanoin and trihexanoin at pH 6·0, with lower yields from tridecanoin, tributyrin and trilaurin. The addition of sodium azide, and to a lesser extent of 2,4-dinitrophenol and certain organophosphours compounds, inhibited the oxidation of triglycerides. The possible role of fungal esterases in spore germination is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-46-1-65
1967-01-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/46/1/mic-46-1-65.html?itemId=/content/journal/micro/10.1099/00221287-46-1-65&mimeType=html&fmt=ahah

References

  1. Acklin O. 1929; The biochemistry of Penicillium glaucum A contribution to the problem of methylketone formation from triglycerides or fatty acids in the metabolism of molds. Biochem. Z 204:253
    [Google Scholar]
  2. Alford J. A., Pierce D. A., Suggs F. G. 1964; Action of microbial lipases on natural fats and synthetic triglycerides. J. Lipid Res 5:390
    [Google Scholar]
  3. Allen P. J. 1965; Metabolic aspects of spore germination in fungi. A. Rev. Phytopathol 3:313
    [Google Scholar]
  4. Atkinson T. G., Allen P. J. 1966; Purification and partial characterization of a factor in cotton wax stimulating the germination of self-inhibited wheat stem rust uredospores. Pl. Physiol., Lancaster 41:28
    [Google Scholar]
  5. Cochrane J. C., Cochrane V. W., Simon F. G., Spaeth J. 1963; Spore germination and carbon metabolism in Fusarium solarti I. Requirements for spore germination. Phytopathology 53:1155
    [Google Scholar]
  6. Cochrane V. W., Cochrane J. C., Collins C. B., Serafin F. G. 1963; Spore germination and carbon metabolism in Fusarium solani II. Endogenous respiration in relation to germination. Am. J. Bot 50:806
    [Google Scholar]
  7. Ekundayo J. A., Carlile M. J. 1964; The germination of sporangiospores of Rhizopus arrhizus; spore swelling and germ tube emergence. J. gen. Microbiol 35:261
    [Google Scholar]
  8. Farkas G. L., Ledingham G. A. 1959; The relation of self-inhibition of germination to the oxidative metabolism of stem rust uredospores. Can. J. Microbiol 5:141
    [Google Scholar]
  9. FodoR P. J., Chari A. 1949; Ester hydrolysing enzyme systems of Aspergillus niger and Penicillium roqueforti . Enzymologia 13:258
    [Google Scholar]
  10. Gehrig R. F., Knight S. G. 1958; Formation of ketones from fatty acids by spores of Penicillium roqueforti . Nature, Lond 182:1937
    [Google Scholar]
  11. Gehrig R. G., Knight S. G. 1963; Fatty acid oxidation by spores of Penicillium roqueforti . Appl. Microbiol 11:166
    [Google Scholar]
  12. Goodman J. J. 1950; Adaptive production of amylase and lipase by three species of fungi. Science, N.Y. 112:176
    [Google Scholar]
  13. Grover R. K. 1964; The effect of amino acids on growth and sporulation of Aspergillus flavus and their carry-over for subsequent spore germination. New Phytol 63:12
    [Google Scholar]
  14. Imamura T., Kataoka K. 1963; Biochemical studies on the manufacturing of Roquefort type cheese. I. Lipase-producing ability of Penicillium roqueforti . Jap. J. zootech. Sci 34:344
    [Google Scholar]
  15. Iwai M., Tsujisaka Y., Fukumuto J. 1964; Studies on lipase. II. Hydrolytic and esterifying actions of crystalline lipase of Aspergillus niger . J. gen. appl. Microbiol 10:13
    [Google Scholar]
  16. Jack R. C. 1964; Characterisation of Glomerella cingulata lipids. Pl. Physiol., Lancaster 39:xxiv
    [Google Scholar]
  17. Kepes A., Cohen G. N. 1962; The physiology of growth. In The Bacteria 4 chap. 5 New York and London: Academic Press;
    [Google Scholar]
  18. Lawrence R. C. 1965a; Activation of spores of Penicillium roqueforti . Nature, Lond 205:801
    [Google Scholar]
  19. Lawrence R. C. 1965b; Use of 2,4-dinitrophenylhydrazine for the estimation of micro amounts of carbonyls. Nature, Lond 205:1313
    [Google Scholar]
  20. Lawrence R. C. 1966; The oxidation of fatty acids by spores of Penicillium roqueforti . J. gen. Microbiol 44:393
    [Google Scholar]
  21. Lawrence R. C., Fryer T. F., Reiter B. 1966; A rapid method for the quantitative estimation of microbial lipases. Nature, Lond 44:393
    [Google Scholar]
  22. Malkov A. M., Suprunenko A. I. 1958; The effect of 2,4-dinitrophenol on aerobic fermentation and synthesis of pyrophosphoric compounds in multiplying yeasts. (Orig. in Russian.) Mikrobiologiya 27:12
    [Google Scholar]
  23. Miller L. P. 1962; l-proline and l-alanine as substitutes for higher temperatures in the germination of fungus spores. Phytopathol 52:743
    [Google Scholar]
  24. Morris H. A., Jezeski J. J. 1953; The action of microorganisms on fats. II. Some characteristics of the lipase system of Penicillium roqueforti . J. Dairy Sci 36:1285
    [Google Scholar]
  25. O’Leary W. M., Weld W., Julia T. 1964; Lipolytic activities of Staphylococcus aureus 1. Nature of the enzyme producing free fatty acids from plasma lipids. J. Bact 88:1356
    [Google Scholar]
  26. Quastel J. H. 1964; Transport reactions at the cell membrane. Can. J. Biochem 42:907
    [Google Scholar]
  27. Scholefield P. G. 1964; The role of adenosine triphosphate in transport reactions. Can. J. Biochem 42:917
    [Google Scholar]
  28. Smith G. N., Worrell C. S., Swanson A. L. 1949; Inhibition of bacterial esterases by chloramphenicol (chloromycetin). J. Bact 55:803
    [Google Scholar]
  29. Srere P. A., Seubert W., Lynen F. 1959; Palmityl coenzyme A deacylase. Biochim. biophys. Acta 33:313
    [Google Scholar]
  30. Thaler H., Eisenlohr W. 1941; The breakdown of saturated fatty acid triglycerides to methyl ketones by Penicillium glaucum . Fette Seifen 48:316
    [Google Scholar]
  31. Weber D. J. 1962; The role of proline in the germination of Rhizopus stolonifer spores. Phytopathology (Abstr.) 52:756
    [Google Scholar]
  32. Weber D. J., Ogawa J. M. 1965; The specificity of proline in the germination of spores of Rhizopus arrhizus . Phytopathology 55:262
    [Google Scholar]
  33. Yanagita T. 1957; Biochemical aspects of the germination of conidiospores of Aspergillus niger . Arch. Mikrobiol 26:329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-46-1-65
Loading
/content/journal/micro/10.1099/00221287-46-1-65
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error