1887

Abstract

SUMMARY

8159 grew well in a minimal medium with succinate or acetamide as sole carbon source. Washed bacteria or cell-free extracts hydrolyzed 15 monocarboxylic amides, but not 4 related -substituted amides. Formamide was the best substrate, followed by -butyramide. Extracts of bacteria grown on acetamide hydrolyzed formamide about 60 times and butyramide about 20 times as rapidly as bacteria grown on succinate. Other short-chain fatty acylamides were also more rapidly hydrolyzed, but benzamidase activity was not similarly induced by growth on acetamide. Extracts of bacteria grown on succinate transferred acyl groups from propionamide, butyramide and nicotinamide to hydroxylamine, to form hydroxamates. Transferase activity, unlike aliphatic amidase activity in extracts was purified twofold and freed from transferase activity. Formamidase and butyramidase activities were not separated, and were similarly affected by heat and dithio--nitrobenzoic acid. The amidase was induced by growth on acetate and on butyramide, but not on propionate, butyrate or benzamide, all of which were good growth-substrates. -methylacetamide and -acetyl-acetamide were non-substrate inducers of amidase for bacteria growing on succinate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-46-1-111
1967-01-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/46/1/mic-46-1-111.html?itemId=/content/journal/micro/10.1099/00221287-46-1-111&mimeType=html&fmt=ahah

References

  1. Bönicke R. 1960; Über das Vorkommen von Acylamidasen in Mycobacterien. IV. Die Differenzierung schnell wachsender Mycobacterien der Species Mycobacterium smegmatis, M. phlei, M. fortuitum und M. thamnopheos durch Nachweis ihrer unterschiedlichen acylamidatischen Stoffwechselleistungen. Zentbl. Bakt. ParasitKde. Abt. 1. Originale 179:209
    [Google Scholar]
  2. Bönicke R., Dittmar W. 1957; Über das Vorkommen von Cycloamidasen in Mycobacterien. Zentbl. Bakt. ParasitKde. Abt. 1. Originale 170:366
    [Google Scholar]
  3. Brammar W. J., Clarke P. H. 1963; Induction and repression of an enzyme in Pseudomonas aeruginosa . J. gen. Microbiol 32:iii
    [Google Scholar]
  4. Brammar W. J., Clarke P. H. 1964; Induction and repression of Pseudomonas aeruginosa amidase. J. gen. Microbiol 37:307
    [Google Scholar]
  5. Claisen L., Moritz E. 1880; Über Propionylameisensäure. Ber. dt. chem. Ges 13:2121
    [Google Scholar]
  6. Claisen L., Shadwell J. 1878; Die Synthese der Brenztraubensäure. Ber. dt. chem. Ges 11:1563
    [Google Scholar]
  7. Clarke P. H., Meadow P. M. 1959; Evidence for the occurrence of permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa . J. gen. Microbiol 20:144
    [Google Scholar]
  8. Conway E. J. 1947 Micro-diffusion Analysis and Volumetric Error, revised edition London: Crosby Lockwood and Sons Ltd;
    [Google Scholar]
  9. Davis B. J. 1964; Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci 121:404
    [Google Scholar]
  10. Draper P. 1965; The adaptive hydrolysis of amides by Mycobacterium smegmatis nctc 8159. J. gen. Microbiol 39:viii
    [Google Scholar]
  11. Ellard G. A., Clarke P. H. 1959; Acetate and fumarate permeases of Mycobacterium smegmatis . J. gen. Microbiol 21:338
    [Google Scholar]
  12. Fitzgerald R. J., Bernheim F., Fitzgbrald D. B. 1948; The inhibition by streptomycin of adaptive enzyme formation in mycobacteria. J. biol. Chem 175:195
    [Google Scholar]
  13. Gale G. R. 1952; The oxidation of benzoic acid by mycobacteria. 1. Metabolic pathways in M. tuberculosis, M. butyricum and M. phlei . J. Bact 63:273
    [Google Scholar]
  14. Gresham T. L., Jansen J. E., Shaver F. W., Bankert R. A., Fiedorek F. T. 1951; β-Propiolactone. XI. Reactions with ammonia and amines. J. Am. chem. Soc 73:3168
    [Google Scholar]
  15. Grossowicz H., Halpern Y. S. 1956a; Inhibition of l-asparaginase in extracts of Mycobacterium, phlei by d-asparagine. Nature, Lond 177:623
    [Google Scholar]
  16. Grossowicz N., Halpern Y. S. 1956b; Inhibition of nicotinamidase activity in cell-free extracts of Mycobacterium phlei by 3-acetylpyridine. Biochim. biophys. Acta 20:576
    [Google Scholar]
  17. Grossowicz N., Halpern Y. S. 1957; Enzymatic transfer and hydrolysis involving glutamine and asparagine. J. biol. Chem 228:643
    [Google Scholar]
  18. Halpern Y. S., Grossowicz N. 1957; Hydrolysis of amides by extracts from mycobacteria. Biochem. J 65:716
    [Google Scholar]
  19. Juhlin I. 1960; Methods for the grouping and typing of mycobacteria. 3. Differentiation of anonymous mycobacteria into groups, sub-groups or types. Acta path, microbiol. scand 50:195
    [Google Scholar]
  20. Kelly M., Clarke P. H. 1962; An inducible amidase produced by a strain of Pseudomonas aeruginosa . J. gen. Microbiol 27:305
    [Google Scholar]
  21. Kelly M., Kornbbrg H. L. 1962a; Discontinuity of amidase formation by Pseudomonas aeruginosa . Biochim. biophys. Acta 59:517
    [Google Scholar]
  22. Kelly M., Kornberg H. L. 1962b; Amidase from Pseudomonas aeruginosa: a multi-headed enzyme. Biochim. biophys. Acta 64:190
    [Google Scholar]
  23. Kelly M., Kornberg H. L. 1964; Purification and properties of acyl-transferases from Pseudomonas aeruginosa . Biochem. J 93:557
    [Google Scholar]
  24. Kimura T. 1959a; Studies on metabolism of amides in mycobacteriaceae. I. Purification and properties of nicotinamidase from Mycobacterium avium . J. Biochem., Tokyo 46:973
    [Google Scholar]
  25. Kimura T. 1959b; Studies on metabolism of amides in mycobacteriaceae. II. Enzymatic transfer of nicotinyl group of nicotinamide to hydroxylamine in Mycobacterium avium . J. Biochem., Tokyo 46:1133
    [Google Scholar]
  26. Kimura T. 1959c; Studies on metabolism of amides in mycobacteriaceae. III. Amidases and transferases in extracts from mycobacteriaceae. J. Biochem., Tokyo 46:1271
    [Google Scholar]
  27. Kimura T. 1959a; Studies on metabolism of amides in mycobacteriaceae. IV. Formation and hydrolysis of hydroxamate. J. Biochem., Tokyo 46:1399
    [Google Scholar]
  28. Kimura T., Sasakawa T. 1956; Lipid metabolism of Mycobacterium tuberculosis avian. I. Enzymatic synthesis of hydroxamic acid from fatty acid and its specificity. J. Biochem., Tokyo 43:175
    [Google Scholar]
  29. Kohn H. I., Harris J. S. 1941; On the mode of action of the sulphonamides. I. Action on Escherichia coli . J. Pharmac. exp. Ther 73:343
    [Google Scholar]
  30. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. biol. Chem 193:265
    [Google Scholar]
  31. Milner H. W., Lawrence N. S., French C. S. 1950; Colloidal dispersion of chloroplast material. Science, N. Y III:633
    [Google Scholar]
  32. Nagayama H., Konno K., Oka S. 1961; Formamidase in mycobacteria and its use in differentiating saprophytic mycobacteria from other mycobacteria. Nature, Lond 190:1219
    [Google Scholar]
  33. Ornstein L. 1964; Disc electrophoresis. I. Background and theory. Ann. N. Y. Acad. Sci 121:321
    [Google Scholar]
  34. Ottey L., Bernheim F. 1956; A comparison of the factors which effect the formation of adaptive enzymes for benzoic acid and inositol in a Mycobacterium . Enzymologia 17:279
    [Google Scholar]
  35. Pershin G. N., Nesvab’da V. V. 1960; A study of the amidase activity of bacteria and the effect on it of some chemotherapeutic substances. Biokhimiya (trans.) 20:258
    [Google Scholar]
  36. Sauton B. 1912; Sur la nutrition minerale du bacille tuberculeux. C. r. hebd. Séanc. Acad. Sci., Paris 155:860
    [Google Scholar]
  37. Schmuck A. 1924; Die Verkettungsreaktion der Amide von α-Oxysäuren. Biochem. Z 147:193
    [Google Scholar]
  38. Schneidau J. D. 1963; The amidase activity of certain species of Nocardia and Mycobacterium . Amer. Rev. resp. Dis 88:563
    [Google Scholar]
  39. Snell F. P., Snell C. T. 1954 Colorimetric Methods of Analysis IV31 New York: Van Nostrand Co. Inc;
    [Google Scholar]
  40. Tschelinzeff W., Schmidt W. 1929; Über ein neues Verfahren zur Darstellung von α-Keton-säuren. Ber. dt. chem. Ges 62:2210
    [Google Scholar]
  41. Urabe K., Takei N., Saito H. 1965; Formamidase activity of mycobacteria. I. Significance as a marker for differentiating mycobacteria. Am. Rev. resp. Dis 91:120
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-46-1-111
Loading
/content/journal/micro/10.1099/00221287-46-1-111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error