1887

Abstract

SUMMARY: The reduction of ferricyanide by resting and actively growing was studied. Under anaerobic conditions ferricyanide acted as a hydrogen acceptor for the complete oxidation of glucose and TCA cycle intermediates. However, reduction of ferricyanide was not coupled to ATP formation. The anaerobic molar growth yield from glucose in the presence of ferricyanide was even less than in its absence. Ferricyanide repressed the synthesis of formate hydrogenylase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-45-3-479
1966-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/45/3/mic-45-3-479.html?itemId=/content/journal/micro/10.1099/00221287-45-3-479&mimeType=html&fmt=ahah

References

  1. Billen D. 1951; The inhibition by nitrate of enzyme formation during growth of E. coli.. J. Bact 62:793
    [Google Scholar]
  2. Brodie A. F., Gots J. S. 1952; Reduction of tetrazolium salts by an isolated bacterial flavoprotein.. Science 116:588
    [Google Scholar]
  3. Dawes E. A., Foster S. M. 1956; The formation of ethanol in E. coli.. Biochim. biophys. Acta 22:253
    [Google Scholar]
  4. Dolin M. I. 1961; Cytochrome-independent electron transport enzymes of bacteria.. The Bacteria 2425 New York and London: Academic Press.;
    [Google Scholar]
  5. Egami F., Ishimoto M., Taniguchi S. 1961; The electron transfer from cytochromes to terminal electron acceptor in nitrate respiration and sulphate respiration.. Haematin Enzymes 2392 London: Pergamon.;
    [Google Scholar]
  6. Friedemann T. E., Haugen G. 1943; The determination of keto acids in blood and urine.. J. biol. Chem 147:415
    [Google Scholar]
  7. Gest H. 1954; Oxidation and evolution of molecular hydrogen by micro-organisms.. Bact. Rev 18:43
    [Google Scholar]
  8. Gray-Young T., Hadjipetrou L. P., Lilly M. D. 1966; The theoretical aspects of biochemical fuel cells.. Biotech. Bioeng (in Press).
    [Google Scholar]
  9. Gunsalus I. C. 1954; Group transfer and acyl-generating functions of lipoic acid derivatives.. The Mechanism of Enzyme Action Ed. by McGilroy W. D., Glass B. Baltimore Maryland, U.S.A.: Johns Hopkins Press.;
    [Google Scholar]
  10. Hadjipetrou L. P. 1965 Relation between energy production and aerobic growth of bacteria Ph.D. thesis University of Utrecht, Netherlands.:
    [Google Scholar]
  11. Hadjipetrou L. P., Stouthamer A. H. 1965; Energy production during nitrate respiration by Aerobader aerogenes.. J. gen. Microbiol 38:29
    [Google Scholar]
  12. Hager L. P. 1957; Trypsin activation of a ferricyanide linked pyruvic acid oxidation.. J. biol. Chem 229:251
    [Google Scholar]
  13. Kashket E. R., Brodie A. F. 1963; Oxidative phosphorylation in fractionated bacterial systems. X Different roles for the natural quinones of E. coli w in oxidative metabolism.. J. biol. Chem 238:2564
    [Google Scholar]
  14. Kepes A., Cohen G. N. 1962; Permeation.. The Bacteria 4179 New York and London: Academic Press.;
    [Google Scholar]
  15. Linnane A. W., Wrigley C. W. 1963; Fragmentation of the electron transport chain of E. coli. Preparation of a soluble formate dehydrogenase-cytochrome b1 complex.. Biochim. biophys. Acta 77:408
    [Google Scholar]
  16. Mark V. 1959; Enzymatic method for determination of dextrose.. Clin. chim. Acta 4:395
    [Google Scholar]
  17. Mickelson M., Werkman C. H. 1938; Influence of pH on the dissimilation of glucose by Aerobader indologenes.. J. Bact 36:67
    [Google Scholar]
  18. Moyed H. S., Kane D. J. 1956; Enzymes and coenzymes of the pyruvate oxidase of Proteus.. J. biol. Chem 218:831
    [Google Scholar]
  19. Nason A. 1962; Symposium on metabolism of inorganic compounds. II. Enzymatic pathways of nitrate, nitrite and hydroxylamine metabolisms.. Bact. Rev 26:16
    [Google Scholar]
  20. Neish A. C. 1952; Analytical methods for bacterial fermentations.. Saskatoon: National Research Council of Canada.;
    [Google Scholar]
  21. Pichinoty F. 1962; Inhibition par l’oxygène de la biosynthèse et de l’activitè de l’hydrogénase et de l’hydrogénlyase chez les bactéries anaèrobies facultatives.. Biochim. biophys. Acta 64:111
    [Google Scholar]
  22. Pinsky M. J., Stokes J. L. 1952; Requirements for formic hydrogenlyase adaptation in nonproliferating suspensions of E. coli.. J. Bact 64:151
    [Google Scholar]
  23. Postgate J. R. 1965; Recent advances in the study of the sulphate-reducing bacteria.. Bact. Rev 29:425
    [Google Scholar]
  24. Quastel J. H., Stephenson M., Whetham M. D. 1925; Some reactions of resting bacteria in relation to anaerobic growth.. Biochem. J 19:304
    [Google Scholar]
  25. Senez J. C. 1962; Some considerations on the energetics of bacterial growth.. Bact. Rev 26:95
    [Google Scholar]
  26. Stoppani A. O. M., Ramos E. H. 1964; The action of 2,4-dinitrophenol on the metabolism of actate and pyruvate in baker’s yeast.. Arch. Biochem. Biophys 105:470
    [Google Scholar]
  27. Wood W. A. 1961; Fermentation of carbohydrates and related compounds.. The Bacteria 259 New York and London: Academic Press.;
    [Google Scholar]
  28. Wosilait W. D., Nason A. 1954; Pyridine nucleotide-menadione reductase from E. coli.. J. Mol. Chem 208:785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-45-3-479
Loading
/content/journal/micro/10.1099/00221287-45-3-479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error