1887

Abstract

SUMMARY: Biosynthetic precursors of carotenoids and hydroxylated carotenoids were substituted for sterol in growth experiments with two representative sterol-requiring mycoplasmas, , strain 07 and avian sp., strain . Only C dihydroxyl compounds but not biosynthetic precursors supported growth of . These results suggested that all enzymes in the biosynthetic pathway to carotenoids were lacking in this organism. A slight response to phytoene and neurosporene indicated that this species may be capable of hydroxylation of C compounds. Certain precursors of carotenoids and C dihydroxyl carotenoids supported growth of avian strain . The phosphorylated mevalonic acids did not support growth of this organism, while isopentenyl pyrophosphate produced a response. These results indicated that an enzymic block occurs between mevalonic acid and isopentenyl pyrophosphate. Phytoene, phytofluene, ζ-carotene, and neurosporene supported growth of this organism indicating that enzymes probably are present for the conversion of certain C intermediates to dihydroxyl C compound(s). Lycopene and β-carotene did not support growth probably due to the lack of hydro-xylating enzymes for these carotenoids. Monohydroxyl C carotenoids produced a negligible growth response with both organisms. The growth response of both organisms to sarcinaxanthin and lutein indicated that the presence of two hydroxyl groups in the 3,3′-positions is essential for growth. That the carotenol of strain supported growth is further proof that a dihydroxyl C compound is required for growth (the exact locations of the hydroxyl groups are unknown). Since earlier work has suggested analogous functions for sterol and carotenol the sterol requirement of certain mycoplasma species appears to be the result of the inability of these organisms to effect biosynthesis of carotenols.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-45-1-73
1966-10-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/45/1/mic-45-1-73.html?itemId=/content/journal/micro/10.1099/00221287-45-1-73&mimeType=html&fmt=ahah

References

  1. Anderson G., Norgard D. W., Porter J. W. 1959; The incorporation of mevalonic acid-2-C14 and dimethylacrylic acid-3-C14 into carotenes.. Arch. Biochem. Biophys 88:68
    [Google Scholar]
  2. Benson A. A. 1964; Plant membrane lipids.. A. Rev. Pl. Physiol 15:1
    [Google Scholar]
  3. Burgos J., Memming F. W., Pennock J. F., Morton R. A. 1963; Dolichol: a naturally occurring C100 isoprenoid alcohol.. Biochem. J 88:470
    [Google Scholar]
  4. Chargaff E. 1933; Sur les carotenoides des bactéries.. C. r. hehd. Séanc. Acad. Sci., Paris 197:946
    [Google Scholar]
  5. Davson H., Danielli J. F. 1952 The Permeability of Natural Membranes 3rd ed. Cambridge University Press.:
    [Google Scholar]
  6. Deuel H. J. 1951 The Lipids. I. Chemistry611 New York: Interscience Publishers Inc.;
    [Google Scholar]
  7. Edward D. G., Fitzgerald W. A. 1951; Cholesterol in the growth of organisms of the pleuropneumonia group.. J. gen. Microbiol 5:576
    [Google Scholar]
  8. Folch J., Lees M., Stanley G. H. S. 1957; A simple method for the isolation and purification of total lipides from animal tissues.. J. biol. Chem 226:497
    [Google Scholar]
  9. Goodwin T. W. 1952The Comparative Biochemistry of the Carotenoids35 London: Chapman and Hall, Ltd.;
  10. Green D. E., Fleischer S. 1963; The role of lipids in mitochondrial electron transfer and oxidative phosphorylation.. Biochim. biophys. Acta 70:554
    [Google Scholar]
  11. Griffiths M., Stanier R. Y. 1956; Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas spheroides . J. gen. Microbiol 14:698
    [Google Scholar]
  12. Henrikson C. V., Smith P. F. 1965; Enzymatic conversions of mevalonic acid by Mycoplasma . Bact. Proc93
    [Google Scholar]
  13. vanIterson W., Ruys A. C. 1960; The fine structure of the Mycoplasmataceae (Micro-organisms of the pleuropneumonia group = P.P.L.O.) I. Mycoplasma hominis, M. fermentans and M. salivarium . J. Ultrastrud. Res 3:282
    [Google Scholar]
  14. Jensen S. L., Cohen-Bazire G., Nakayama T. O. M., Stanier R. Y. 1958; The path of carotenoid synthesis in a photosynthetic bacterium.. Biochim. biophys. Acta 29:477
    [Google Scholar]
  15. Karrer P., Jucker E. 1950 Carotenoids172 Amsterdam: Elsevier Publishing Company Inc.;
    [Google Scholar]
  16. Morton H. E., Smith P. F., Leberman P. R. 1949; Symbiotic growth of pleuropneumonia-like organisms with bacterial colonies.. Proc. Soc. exp. Biol. Med 72:328
    [Google Scholar]
  17. Morton H. E., Smith P. F., Leberman P. R. 1951; Investigation of the cultivation of pleuropneumonia-like organisms from man.. Am. J. Syph. Gonorrhea vener. Dis 35:361
    [Google Scholar]
  18. Nakayama T. O. M. 1958; The carotenoids of Rhodopseudomonas. 1. Carotenoids of the green mutant.. Arch. Biochem. Biophys 75:352
    [Google Scholar]
  19. Nash H., Zscheile F. P. 1945; Absorption spectrum of ζ-carotene.. Arch. Biochem 7:305
    [Google Scholar]
  20. Pollack J. D., Razin S., Pollack M. E., Cleverdon R. C. 1965; Fractionation of Mycoplasma cells for enzyme localization.. Life Sciences 4:973
    [Google Scholar]
  21. Popjak G., Cornforth J. W., Cornforth R. H., Ryhage R., Goodman D. S. 1962; Studies on the biosynthesis of cholesterol. XVI. Chemical synthesis of 1-H2-2-C14-trans-trans-farnesyl pyrophosphate and their utilization in squalene biosynthesis.. J. biol. Chem 237:56
    [Google Scholar]
  22. Rothblat G. H., Smith P. F. 1961; Non-saponifiable lipids of representative pleuropneumonia-like organisms.. J. Bact 82:479
    [Google Scholar]
  23. Rowland R. L., Latimer P. H., Giles J. A. 1956; Flue-cured tobacco. I. Isolation of solanesol, an unsaturated alcohol.. J. Am. chem. Soc 78:4680
    [Google Scholar]
  24. Smith P. F. 1963a; The carotenoid pigments of Mycoplasma . J. Gen. Microbiol 32:307
    [Google Scholar]
  25. Smith P. F. 1963b; The role of sterols in the growth and physiology of pleuropneumonia-like organisms.. Recent Progress in Microbiology Gibbons N. E. 518 Toronto: University of Toronto Press.;
    [Google Scholar]
  26. Smith P. F. 1964; Relation of sterol structure to utilization in pleuropneumonia-like organisms.. J. Lipid Res 5:121
    [Google Scholar]
  27. Smith P. F., Boughton J. E. 1960; Role of protein and phospholipid in growth of pleuro-pneumonia-like organisms.. J. Bact 80:851
    [Google Scholar]
  28. Smith P. F., Henrikson C. V. 1965a; Comparative biosynthesis of mevalonic acid by Mycoplasma . J. Bact 89:146
    [Google Scholar]
  29. Smith P. F., Henrikson C. V. 1965b; Glucose containing phospholipids in Mycoplasma laidlawii, strain b.. J. Lipid Res 6:106
    [Google Scholar]
  30. Smith P. F., Lynn R. J. 1958; Lipid requirements for the growth of pleuropneumonia-like organisms.. J. Bact 76:264
    [Google Scholar]
  31. Smith P. F., Rothblat G. H. 1962; Comparison of lipid composition of pleuropneumonia-like and l-type organisms.. J. Bact 83:500
    [Google Scholar]
  32. Sobin B., Stahly G. L. 1942; The isolation and absorption spectrum maxima of bacterial carotenoid pigments.. J. Bact 44:265
    [Google Scholar]
  33. Suzue G. 1959; Carotenogenesis by Micrococcus pyogenes, var. aureus (Staphylococcus aureus).. J. Biochem (Tokyo) 46:1497
    [Google Scholar]
  34. Zechmeister L., Sandoval A. 1946; Phytofluene.. J. Am. chem. Soc 68:197
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-45-1-73
Loading
/content/journal/micro/10.1099/00221287-45-1-73
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error