1887

Abstract

SUMMARY: The ability of washed spores of to oxidize fatty acids decreased markedly with age but was restored by adding specific sugars and amino acids. Only the C to C fatty acids were oxidized to the corresponding methyl ketone with one less carbon atom. The yield of methyl ketone between pH 5.5 and 7.0 decreased progressively from a maximum of 75% from octanoic acid to zero from myristic acid. The small amounts of metabolic carbon dioxide evolved greatly stimulated the oxidation of C and C fatty acids. The addition of sodium azide, 2,4-dinitrophenol (DNP) and certain divalent metallic ions, but not chloramphenicol, inhibited the oxidation of fatty acids. Oxidation was preceded by a lag period which was lengthened by increasing the fatty acid concentration or by decreasing the concentration of spores. Since cell-free extracts of spores were able to oxidize fatty acids, the lag phase with whole spores appears to be due to the absence of active transport systems. This is also indicated by the elimination of the lag phase by pre-incubation with octanoic acid but not by pre-incubation with glucose or casamino acids. The possible significance of methyl ketone formation in fatty acid metabolism is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-44-3-393
1966-09-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/44/3/mic-44-3-393.html?itemId=/content/journal/micro/10.1099/00221287-44-3-393&mimeType=html&fmt=ahah

References

  1. Atkinson T. G., Allen P. J. 1958; Germination of wheat stem rust uredospores en masse.. Plant Physiol. 33:Suppl. ix
    [Google Scholar]
  2. Chiriboga J., Roy D. N. 1962; Rapid method for determination of decarboxylation of compounds labelled with carbon-14.. Nature, Lond. 193:684
    [Google Scholar]
  3. Cohen G. N., Monod J. 1957; Bacterial permeases.. Bact. Rec. 21:169
    [Google Scholar]
  4. Farkas G. L., Ledingham G. A. 1959; The relation of self-inhibition of germination to the oxidative metabolism of stem rust uredospores.. Can. J. Microbiol. 5:141
    [Google Scholar]
  5. Franke W., Heinen W. 1958; Zur Kenntnis des Fettsaureäbbaus durch Schimmelpilze. I. Über die Methylketonbildung durch Schimmelpilze.. Arch. Mikrobiol. 31:50
    [Google Scholar]
  6. Franke W., Platzeck A., Eichhorn G. 1962; Zur Kenntnis des Fettsäureabbaus durch Schimmelpilze. IV. Versuche zum weiteren Umsatz der Methylketone.. Arch. Mikrobiol. 41:154
    [Google Scholar]
  7. Gale E. F., Folkes J. P. 1953; Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus.. Biochem. J. 53:493
    [Google Scholar]
  8. Gehrig R. F., Knight S. G. 1963; Fatty acid oxidation by spores of Penicillium roqueforti.. Appl. Microbiol. 11:166
    [Google Scholar]
  9. Green E. F. 1963; Fatty acid oxidation.. Progr. Chem. Fats & other Lipids, 6:89
    [Google Scholar]
  10. Harvey R. J., Collins E. B. 1962; Citrate transport system of Streptococcus diacetilactis.. J. Bact. 83:1005
    [Google Scholar]
  11. Huelin F. E. 1952; Volatile products of apples. III. Identification of aldehydes and ketones.. Aust. J. Sci. (Ser. B) 5:328
    [Google Scholar]
  12. Jones L. A., Holmes J. C., Seligman R. B. 1956; Spectrophotometric studies of some 2,4-dinitrophenylhydrazones.. Analyt. Chem. 28:191
    [Google Scholar]
  13. Klein F., deJong K. 1956; Paper chromatography of 2,4-dinitrophenyl-hydrazones of aliphatic carbonyl compounds.. Rec. trav. chim. 75:1285
    [Google Scholar]
  14. Lawrence R. C. 1965a; Activation of spores of Penicillium roqueforti.. Nature, Lond. 208:801
    [Google Scholar]
  15. Lawrence R. C. 1965b; Use of 2,4-dinitrophenylhydrazine for the estimation of micro amounts of carbonyls.. Nature, Lond. 205:1313
    [Google Scholar]
  16. Leach F. R., Snell E. E. 1960; The absorption of glycine and alanine and their peptides by Lactobacillus casei.. J. biol. Chem. 235:3523
    [Google Scholar]
  17. Metcalf L. D. 1960; Gas chromatography of unesterified fatty acids using polyester columns treated with phosphoric acid.. Nature, Lond. 188:142
    [Google Scholar]
  18. Quastel J. H. 1964; Transport reactions at the cell membrane.. Can. J. Biochem. 42:907
    [Google Scholar]
  19. Pressman B. C., Lardy H. A. 1956; Effect of surface active agents on the latent ATP-ase of mitochondria.. Biochim. biophys. Acta 21:458
    [Google Scholar]
  20. Reid E. E., Ruhoff J. R. 1944 Organic Synthesis. Ed. by Blatt H. A. 2 New York: John Wiley and Sons.;
    [Google Scholar]
  21. Scholefield P. G. 1964; The role of adenosine triphosphate in transport reactions.. Can. J. Biochem. 42:917
    [Google Scholar]
  22. Stokoe W. N. 1928; The rancidity of coconut oil produced by mould action.. Biochem. J. 22:80
    [Google Scholar]
  23. Thaler H., Geist G. 1939; The chemistry of ketone rancidity. I. Decomposition of fatty acids by Penicillium glaucum.. Biochem. Z. 302:121
    [Google Scholar]
  24. Vakil J. R., RaghavendraRao M. R., Bhattacharyya P. K. 1961; Effect of carbon dioxide on the germination of conidiospores of Aspergillus niger.. Arch. Mikrobiol. 39:53
    [Google Scholar]
  25. Yanagita T. 1957; Biochemical aspects of the germination of conidiospores of Aspergillus niger.. Arch. Mikrobiol. 26:329
    [Google Scholar]
  26. Zweig G., Devay J. E. 1959; On the biosynthesis of gibberellins from C12 substrates by Fusarium moniliforme.. Mycologia 51:877
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-44-3-393
Loading
/content/journal/micro/10.1099/00221287-44-3-393
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error