1887

Abstract

SUMMARY: A reaction mixture is described consisting of a buffered solution of amino acids, salts, growth factors and glucose in which freshly harvested washed incorporated radioactive tracers and synthesized nisin. Rapid nisin synthesis started after a delay of 30-60 min. but bacteria pre-incubated in the reaction mixture synthesized nisin without delay although the rate of protein synthesis remained the same as that of freshly harvested bacteria. Although growing is sensitive to penicillin and mitomycin these antibiotics had no effect on nisin synthesis by washed organisms. Actinomycin D inhibited uptake of tritiated uridine immediately and inhibited nisin synthesis after a delay of about 60 min. Antibiotics which interfere with protein synthesis, e.g. chloramphenicol, puromycin and terramycin also interfered with nisin synthesis. The inhibition was immediate and occurred irrespective of whether the antibiotics were added at the beginning of an experiment or after 50 min. Nisin synthesis was more sensitive than protein synthesis. The data suggest that nisin synthesis occurs by a mechanism similar to that of protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-44-2-209
1966-08-01
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/44/2/mic-44-2-209.html?itemId=/content/journal/micro/10.1099/00221287-44-2-209&mimeType=html&fmt=ahah

References

  1. Banerjee A. B., Bose S. K. 1964; Biosynthesis of mycobacillin, a new antifungal peptide.. J. Bact. 87:1397
    [Google Scholar]
  2. Berg T. L., holm L. O., Laland S. G. 1965; The biosynthesis of gramicidin S in a cell-free system.. Biochem. J. 96:43
    [Google Scholar]
  3. Bernlohr R. W., Novelli G. D. 1963; Bacitracin biosynthesis and spore formation: The physiological role of an antibiotic.. Arch. Biochim. Biophys. 103:94
    [Google Scholar]
  4. Berridge N. J., Barrett J. 1952; A rapid method for the turbidimetric assay of antibiotics.. J. gen. Microbiol. 6:14
    [Google Scholar]
  5. Berridge N. J., Newton G. G. F., Abraham E. P. 1952; Purification and nature of the antibiotic nisin.. Biochem. J. 52:529
    [Google Scholar]
  6. Bodansky M., Perlman D. 1964; Are peptide antibiotics small proteins?. Nature, Lond. 204:840
    [Google Scholar]
  7. Bodley J. W., Uemura I., Adiga P. R., Okuda K., Winnick T. 1964; Participation of ribosomes in the biosynthesis of gramicidins and tyrocidines.. Biochemistry, 3:1492
    [Google Scholar]
  8. Browne S. W., Rogers P. 1963; Accumulation of repressor for ornithine transcarbamylase synthesis in Escherichia coli mediated by chloramphenicol.. Biochim. Biophys. Acta, 76:600
    [Google Scholar]
  9. Cheeseman G. C., Berridge N. J. 1959; Observations on the molecular weight and chemical composition of nisin A.. Biochem. J. 71:185
    [Google Scholar]
  10. Cornell N., Snoke J. E. 1964; Biosynthesis of bacitracin and protein.. Biochim. Biophys. Acta, 91:533
    [Google Scholar]
  11. Dent C. E. 1947; The amino-aciduria in Fanconi syndrome.. Biochem. J. 41:240
    [Google Scholar]
  12. Eikhom T. S., Jonsen J., Laland S., Refsvik T. 1963; On the biosynthesis of gramicidin S.. Biochim. Biophys. Acta, 76:465
    [Google Scholar]
  13. Eikhom T. S., Jonsen J., Laland S., Refsvik T. 1964; Studies on the biosynthesis of gramicidin S in whole cells of Bacillus brevis . Biochim. Biophys. Acta 80:648
    [Google Scholar]
  14. Gale E. F. 1963; Mechanism of antibiotic action.. Pharmacol. Rev. 15:481
    [Google Scholar]
  15. Gale E. F., Folkes J. P. 1953; The assimilation of amino-acids by bacteria. 14. Nucleic acid and protein synthesis in Staphylococcus aureus . Biochem. J. 53:483
    [Google Scholar]
  16. Gibbs B. M., Hurst A. 1964; Limitations of nisin as a preservative in non-dairy foods. Microbial Inhibitors in Food Molin p. 151 Stockholm: Almqvist and Wiksell.;
    [Google Scholar]
  17. Hall J. B., Sedat J. W., Adiga P. R., Uemura I., Winnick T. 1965; Gramicidin S messenger RNA. I. Isolation and characterization.. J. mol. Biol. 12:162
    [Google Scholar]
  18. Hawley H. B. 1957; Nisin in food technology.. Fd Mf. 32:430
    [Google Scholar]
  19. Hirsch A. 1951a; Growth and nisin production of a strain of Streptococcus lactis.. J. gen. Microbiol. 5:208
    [Google Scholar]
  20. Hirsch A. 1951b; Various antibiotics from one strain of Streptococcus lactis . Nature, Lond. 167:1031
    [Google Scholar]
  21. Hirsch A., Grinsted E. 1951; The differentiation of the lactic streptococci and their antibiotics.. J. Dairy Res. 18:198
    [Google Scholar]
  22. Hurowitz J., Furth J. J., Malamy M., Alexander M. 1962; The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by Actinomycin D and proflavin.. Proc. natn. Acad. Sci. U.S.A. 48:1222
    [Google Scholar]
  23. Iyer V. N., Szybalski W. 1963; A molecular mechanism for mitomycin action: linking of complementary DNA strands.. Proc. natn. Acad. Sci. U.S.A. 50:355
    [Google Scholar]
  24. Katz E. 1960; Biogenesis of the actinomycins.. Ann. N.Y. Acad. Sci. 89:304
    [Google Scholar]
  25. Katz E., Weissbach H. 1962; Effect of Chloromycetin and penicillin on the incorporation of amino-acids into actinomycin and protein by Streptomyces antibioticus . Biochem. Biophys. Res. Com. 8:186
    [Google Scholar]
  26. Katz E., Weissbach H. 1963; Incorporation of ‘C’ labelled amino-acids into actinomycin and protein by Streptomyces antibioticus.. J. biol. Chem. 238:666
    [Google Scholar]
  27. Katz E., Wise M., Weissbach H. 1965; Actinomycin biosynthesis. Differential effect of chloramphenicol on protein and peptide antibiotic synthesis.. J. biol. Chem. 240:3071
    [Google Scholar]
  28. Kirk J. M. 1960; The mode of action of actinomycin D.. Biochim. Biophys. Acta, 42:167
    [Google Scholar]
  29. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent.. J. biol. Chem. 193:265
    [Google Scholar]
  30. Mach B., Reich E., Tatum E. L. 1963; Separation of the biosynthesis of the antibiotic polypeptide tyrocidine from protein biosynthesis.. Proc. natn. Acad. Sci. U.S.A. 50:175
    [Google Scholar]
  31. Mach B., Tatum E. L. 1964; Environmental control of amino acid substitutions in the biosynthesis of the antibiotic polypeptide tyrocidine.. Proc. natn. Acad. Sci. U.S.A. 52:876
    [Google Scholar]
  32. Mattick A. T. R., Hirsch A. 1947; Further observation on an inhibitory substance (Nisin) from lactic streptococci.. Lancet ii:5
    [Google Scholar]
  33. Niven C. F. 1944; Nutrition of Streptococcus lactis.. J. Bact. 47:343
    [Google Scholar]
  34. Okuda K., Edwards G. C., Winnick T. 1963; Biosynthesis of gramicidin and tyrocidine in the Dubos strain of Bacillus brevis.. J. Bad. 85:329
    [Google Scholar]
  35. Okuda K., Uemura I., Bodley J. W., Winnick T. 1964; Further aspects of gramicidin and tyrocidine biosynthesis in the cell-free system of Bacillus brevis . Biochemistry, 3:108
    [Google Scholar]
  36. Park J. T., Hancock R. 1960; A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus.. J. gen. Microbiol. 22:249
    [Google Scholar]
  37. Paulus H., Gray E. 1964; The biosynthesis of polymixin B by growing cultures of Bacillus polymyxa.. J. biol. Chem. 239:865
    [Google Scholar]
  38. Sanger F. 1959; Chemistry of insulin.. Science, 129:1340
    [Google Scholar]
  39. Sedat J. W., Hall J. W. 1965; Gramicidin S messenger RNA. II. Physical and chemical properties.. J. mol. Biol. 12:174
    [Google Scholar]
  40. Sells B. H. 1965; Puromycin: Effect on messenger RNA synthesis and β-galactosidase formation in Escherichia coli 15 T.. Science, 148:371
    [Google Scholar]
  41. Shimura K., Sasaki T., Sugawara K. 1964; Biosynthesis of bacitracin I. Formation of bacitracin by a subcellular fraction of Bacillus licheniformis . Biochim. Biophys. Acta, 86:46
    [Google Scholar]
  42. Snoke J. E. 1961; Formation of bacitracin by protoplasts of Bacillus licheniformis.. J. Bad. 81:987
    [Google Scholar]
  43. Strominger J. L. 1962; Biosynthesis of bacterial cell walls.. Fed. Proc. 21:134
    [Google Scholar]
  44. Sypherd P. S., Strauss N. 1963; Chloramphenicol promoted repression of β-galactosidase synthesis in Escherichia coli . Proc. natn. Acad. Sci. U.S.A. 49:400
    [Google Scholar]
  45. Uemura I., Okuda K., Winnick T. 1963; Biosynthesis of gramicidins and tyrocidines in cell-free preparations from Bacillus brevis.. Biochemistry, 2:719
    [Google Scholar]
  46. Uemura I., Bodley J. W., Adiga R. P., Winnick T. 1965; Effect of antibiotics and ribonuclease on polypeptide and protein synthesis in different strains of Bacillus brevis. . Biochim. Biophys. Acta, 95:86
    [Google Scholar]
  47. Winnick R. E., Winnick T. 1961; Biosynthesis of gramicidin S. II. Incorporation experiments with labelled amino-acids analogues, and the amino-acid activation process.. Biochim. Biophys. Acta, 53:461
    [Google Scholar]
  48. Winnick R. E., Lis H., Winnick T. 1961; Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis . Biochim. Biophys. Ada, 49:451
    [Google Scholar]
  49. Yukioka M., ,.Tsukamoto Y., Yoshitaka S., Takitaro T., Shuzo O., Shohei O. 1965; Biosynthesis of gramicidin S by a cell-free system of Bacillus brevis . Biochim. Biophys. Res. Com. 19:204
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-44-2-209
Loading
/content/journal/micro/10.1099/00221287-44-2-209
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error