1887

Abstract

Summary: Nine spontaneous mutants with altered forms of flagellar antigen were obtained by picking more rapidly spreading swarms from growth in semi-solid medium containing enough anti- serum to retard spreading growth. One mutant was in a line of given antigen by transduction, the rest in strain LT2 . Two mutants of independent origin were serologically identical and presumably arose by a recurrence of the same mutation. Bacteria expressing the mutant phase-1 antigen were normally motile and the LT2 mutants showed normal phase-variation, to give cultures with an apparently unaltered phase-2 antigen, . Flagellate bacteria with flagella of two of the mutant types, M6 and M9, were agglutinated to titres 8--16 by sera from uninoculated rabbits and to titres 50--100 by sera from rabbits immunized with unrelated antigens; suspensions of flagella of these types, but not of others, caused flocculation of indian ink.

The residual activity of anti- (wild type) sera fully absorbed with mutant antigens showed that each mutant antigen had lost some of the serological specificity of the wild-type antigen; the complex pattern of residual activity on mutant and wild-type antigens of anti- (wild type) sera absorbed with pairs of mutant antigens indicated the existence of at least 13 antigenic factors in the wild-type antigen, and that each ofthe serologically distinct mutant antigens lacked a different combination of these factors.

The residual activities on the homologous antigens of antimutant sera fully absorbed with wild-type antigen showed that all the mutant antigens, except perhaps M6 and M9, had antigenic specificities absent from the wild-type antigen. Each of the 8 serologically different antigens had a unique new specificity, but antigens M7, M10 and M12 shared some new factors.

Attempts to infer the linear order of the presumed sites of amino acid substitution in the polypeptide chain of flagellin from the serological data were unsuccessful; this probably indicates the incorrectness of an assumption involved: namely, that anti-flagellar antibodies have an absolute affinity for, and only for, all of the amino acid side-chains (or all of a reactive subset of them) in a relevant length of polypeptide chain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-44-1-121
1966-07-01
2022-05-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/44/1/mic-44-1-121.html?itemId=/content/journal/micro/10.1099/00221287-44-1-121&mimeType=html&fmt=ahah

References

  1. Aach H.G. 1959; Serologische Untersuchungen zur Struktur des Tabakmosaikvirus. Biochim. biophys. Acta 32:140
    [Google Scholar]
  2. Anderer F. A., Schlumberger H. D. 1965; Properties of different artificial antigens related to tobacco mosaic virus. Biochim. biophys. Acta 97:503
    [Google Scholar]
  3. Arkwright J. A. 1927; Microscopic evidence for the different manner of clumping of motile bacteria with somatic and flagellar agglutinins. J. Path. Bact 30:566
    [Google Scholar]
  4. Bruner D. W., Edwards P. R. 1939; A note on the monophasic Salmonella types. J. Bact 37:365
    [Google Scholar]
  5. Craigie J. 1931; Studies on the serological reactions of the flagella of B. typhosus . J. Immunol 21:417
    [Google Scholar]
  6. Edwards P. R., Bruner D. W. 1939a; Reversibility of the alpha and beta phases of Salmonella typhi . Proc. Soc. exp. Biol. Med 41:223
    [Google Scholar]
  7. Edwards P. R., Bruner D. W. 1939b; The demonstration of phase variation in Salmonella abortusequi . J. Bact 38:63
    [Google Scholar]
  8. Edwards P. R., Bruner D. W. 1942; Serological identification of Salmonella cultures. Circ. Ky agric. Exp. Stn no. 54
    [Google Scholar]
  9. Gard S. 1937; Das Schwärmphänomen in der Salmonella-Gruppe und seine praktische Ausnützung. Z. Hyg. InfedKrankh 121:139
    [Google Scholar]
  10. Gnosspelius A. 1939; Über künstlisch Veranderungen des H-Antigens in der Sal-monella-Gruppe. Z. Hyg. InfectKrankh 121:529
    [Google Scholar]
  11. Günther O., Hauser A. 1954; Salmonella 30: i; 1,2: ein neuer Salmonellatyp. Zentbl. Bakt.ParasitKde (Abt. 1. Orig.) 161:363
    [Google Scholar]
  12. Harris J. I., Knight C. A. 1955; Studies on the action of carboxypeptidase on tobacco mosaic virus. J. biol. Chem 214:215
    [Google Scholar]
  13. Joys T. M. 1961; Mutation of flagellar antigen i in Salmonella typhimurium.. Ph.D. Thesis, University of London.:
    [Google Scholar]
  14. Joys T. M., Stocker B. A. D. 1963; Mutation and recombination of flagellar antigen i of Salmonella typhimurium.. Nature, Lond 197:413
    [Google Scholar]
  15. Kaplan S., Mills S. E., Ensign S., Bonner D. W. 1964; Genetic determination of the antigenic specificity of tryptophan synthetase. J. mol. Biol 8:801
    [Google Scholar]
  16. Kauffmann F. 1951; The Enterobacteriaceae. 1st ed. Copenhagen: Ejnar Munksgaard.;
    [Google Scholar]
  17. Lederberg J., Edwards P. R. 1953; Serotypic recombination in Salmonella. J. Immunol 71:232
    [Google Scholar]
  18. McDonough M. W. 1962; Tryptic peptide maps of mutant Salmonella flagellins. Biochem. J 84:114p
    [Google Scholar]
  19. McDonough M. W. 1965; Amino acid composition of antigenically distinct Salmonella flagellar proteins. J. mol. Biol 12:342
    [Google Scholar]
  20. Mackie T. J., McCartney J. E. 1953; Handbook of Practical Bacteriology. 9th ed. Edinburgh: Livingstone.;
    [Google Scholar]
  21. Mäkelä P. H. 1964; Genetic homologies between flagellar antigens of Escherichia coli and Salmonella abony.. J. gen. Microbiol 35:503
    [Google Scholar]
  22. Mandelbaum M. 1932; Zur Typendifferenzierung innerhalb der Typhus-Paratyphus- gruppe durch neue serologische Methoden und die Anwendung derselben zur Diagnose der durch diese Keime verusachten Krankheiten. Zentbl. Bakt.ParasitKde (II. Ref.) 105:377
    [Google Scholar]
  23. Scott W. M. 1926; The ‘Thompson’ type of Salmonella. J. Hyg., Camb 25:398
    [Google Scholar]
  24. Smith S. M., Stocker B. A. D. 1962; Colicinogy and recombination. Br. med. Bull 18:46
    [Google Scholar]
  25. Stocker B. A. D. 1956; Abortive transduction of motility in Salmonella: a non-replicated gene transmitted through many generations to a single descendant. J. gen. Microbiol 15:575
    [Google Scholar]
  26. Stocker B. A. D., McDonough N. W., Ambler R. P. 1961; A gene determining presence or absence of ॉ-N-methyl-lysine in Salmonella flagellar protein. Nature, Lond 189:556
    [Google Scholar]
  27. Stocker B. A. D., Zinder N. D., Lederberg J. 1953; Transduction of flagellar characters in Salmonella. J. gen. Microbiol 9:410
    [Google Scholar]
  28. Yanofsky C., Carlton B. C., Guest J. R., Helinski D. R., Henning U. 1964; On the co-linearity of gene structure and protein structure. Proc. natn. Acad. Sci. U.S.A 51:266
    [Google Scholar]
  29. Zinder N. D., Lederberg J. 1952; Genetic exchange in Salmonella. J. Bact 64:679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-44-1-121
Loading
/content/journal/micro/10.1099/00221287-44-1-121
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error