1887

Abstract

SUMMARY

Capsules of only begin to be formed towards the end of exponential growth and appear first at the extremities of the cells. Once begun, capsule formation is not inhibited by tetracycline, so that capsular polypeptide is not synthesized like protein. Cultures were grown in broth + albumin in the presence of 0.015 M-HCO—and 5 vol. CO + 95 vol. air until capsulation began, and were then incubated in air in tetracycline broth (to inhibit subsequent enzyme formation): capsules continued to increase in size, which suggested that HCO—made capsular synthesis possible but was not required for the formation of the polypeptide itself. Cultures transferred from air to adequate concentrations of CO did not immediately become capsulated, whatever their stage of growth.

Mutants with altered nutritional requirements for capsulation were selected by phage α from wild-type strains grown either (1) on charcoal agar in air, so selecting for CO-independence (D mutants), or (2) on bicarbonate agar incubated in CO. so selecting for independence of an absorbent (F mutants). Both classes formed capsules in air (≃ 0.0001 M-HCO-) and the capsular polymer apparently had the same chemical structure as that of their parent. No evidence was found that the mutants differed from their parent in being able to fix HCO—more efficiently or in being able to utilize compounds normally derived from HCO—that were present in the medium. They may therefore arise following mutation in regulatory genes controlling capsular synthesis.

Some D mutants grew very slowly in CO but yielded CO-resistant mutants of which 66 were examined: 44 resembled the parental strain 2160s, and 22 were rough (C—). CO-sensitive D mutants also gave rise to derivatives which formed rough colonies in air: some resembled strain 2160s; others were C—; but some had a new phenotype in being rough in air, fully capsulated in 0.006-0-015 M-HCO—and inhibited by 0.03 M-HCO -.

Absorbents are required by wild-type strains to inactivate the long-chain fatty acids that occur in nutrient media. These acids are thought to interfere with the uptake or utilization of HCO—, rather than with a later stage in capsular synthesis, because (1) they do not inhibit capsulation of D or F mutants, (2) they enable CO-sensitive D mutants to grow in CO, and (3) they probably interfere with toxin formation, which also requires CO As toxin is protein it must be synthesized differently from capsular polypeptide, and the only stage common to both pathways is therefore likely to be HCO—uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-43-1-119
1966-04-01
2022-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/43/1/mic-43-1-119.html?itemId=/content/journal/micro/10.1099/00221287-43-1-119&mimeType=html&fmt=ahah

References

  1. Bail O. 1915; Veränderungen der Bakterien im Tierkörper. IX. Ueber die Korrelation zwischen Kapselbildung, Sporenbildung und Infektiosität des Milzbrandbacillus. ZenM. Bakt.ParasüKde Abt. 1, Orig. 75159
    [Google Scholar]
  2. Belton F. C., Strange R. E. 1954; Studies on a protective antigen produced in vitro from Bacillus anthracis: medium and methods of production. Br. J. exp. Path 35:144
    [Google Scholar]
  3. Bonezzi G., Cavalli L., Magni G. 1943; Untersuchungen über die Virulenz. I. Eine Virulenzgleichung und ihre biologische Deutung. ZenM. Bakt.ParasuK.de Abt. 1, Orig. 150:17
    [Google Scholar]
  4. Bovarnick M. 1942; The formation of extracellular d(—) glutamic acid polypeptide by Bacillus subtilis. J. biol. Chem 145:415
    [Google Scholar]
  5. Bricas E., Fromageot Cl. 1953; Naturally occurring peptides. Advanc. Protein Chem 8:1
    [Google Scholar]
  6. Burrows T. W., Bacon G. A. 1958; The effects of loss of different virulence determinants on the virulence and immunogenicity of strains of Pasteurellapestis. Br. J. exp. Path 39:278
    [Google Scholar]
  7. Chao K. C., Foster J. W. 1959; A glutamic acid-producing bacillus. J. Bact 77:715
    [Google Scholar]
  8. Cromartie W. J., Bloom W. L., Watson D. W. 1947; Studies on infection with Bacillus anthracis. I. A histopathological study of skin lesions produced by B. anthracis in susceptible and resistant animal species. J. infect. Dis 80:1
    [Google Scholar]
  9. Eastin J. D., Thorne C. B. 1963; Carbon dioxide fixation in Bacillus anthracis. J. Bact 85:410
    [Google Scholar]
  10. Gladstone G. P. 1948; Immunity to anthrax. Production of the cell-free protective antigen in cellophane sacs. Br. J. exp. Path 29:379
    [Google Scholar]
  11. Goldman M., Blumenthal H. J. 1964; Changes in terminal respiratory pathways of intact cells of Bacillus cereus at various stages of development. J. Bact 87:387
    [Google Scholar]
  12. Hahn F. E., Wisseman C. L., Hopps H. E. 1954; Mode of action of chloramphenicol. II. Inhibition of bacterial d-polypeptide formation by an l-stereoisomer of chloramphenicol. J. Bact 67:674
    [Google Scholar]
  13. Hardwick W. A., Guirard B., Foster J. W. 1951; Antisporulation factors in complex organic media. II. Saturated fatty acids as antisporulation factors. J. Bact 61:145
    [Google Scholar]
  14. Harold F. M. 1964; Enzymic and genetic control of polyphosphate accumulation in Aerobacter aerogenes. J. gen. Microbiol 35:81
    [Google Scholar]
  15. Housewright R. D. 1962 The biosynthesis of homopolymeric peptides. The Bacteria Ed. by Gunsalus I. C., Stanier R. Y. 3389 New York and London: Academic Press;
    [Google Scholar]
  16. Huang H. T. 1964; Microbial production of amino acids. Progr. industr. Microbiol 5:55
    [Google Scholar]
  17. IvÀnovics G. 1937; Unter welchen Bedingungen werden bei der Nährbodenzüchtung der Milzbrandbazillen Kapseln gebildet?. Zentbl. Bakt.ParasitKde Abt. 1, Orig. 138449
    [Google Scholar]
  18. Katchalski E., Seal M., Silman H. I., Berger A. 1964 Polyamino acids as protein models. The Proteins, 2nd ed.. Ed. by Neurath H. 2405 New York and London: Academic Press;
    [Google Scholar]
  19. Keppie J., Harris-Smith P. W., Smith H. 1963; The chemical basis of the virulence of Bacillus anthracis. LX. Its aggressins and their mode of action. Br. J. exp. Path 44:446
    [Google Scholar]
  20. Kinoshita S. 1959; The production of amino acids by fermentation processes. Advanc. appl. Microbiol 1:201
    [Google Scholar]
  21. Klein F., Haines B. W., Mahlandt B. G., DeArmon I. A., Lincoln R. E. 1963; Dual nature of resistance mechanisms as revealed by studies of anthrax septicaemia. J. Bact 85:1032
    [Google Scholar]
  22. Klein F., Mahlandt B. G., Lincoln R. E., DeArmon I. A., Fernelius A. L. 1961; Immunization as a factor affecting the course of septicaemic anthrax. Science 133:1021
    [Google Scholar]
  23. Kodicek E. 1949; The effect of unsaturated fatty acids on Gram-positive bacteria. Symp. Soc. exp. Biol 3:217
    [Google Scholar]
  24. Kodicek E. 1962; Aspects of the constitution of bacterial membranes. Recent Prog. Microbiol 8:23
    [Google Scholar]
  25. Lacey B. W. 1961; Non-genetic variation of surface antigens in Bordetella and other micro-organisms. Symp. Soc. gen. Microbiol 11:343
    [Google Scholar]
  26. Lemcke R. M. 1964; The serological differentiation of Mycoplasma strains (pleuro-pneumonia-like organisms) from various sources. J. Hyg., Camb 62:199
    [Google Scholar]
  27. Leonard C. G., Housewright R. D. 1963; Polyglutamic acid synthesis by cell-free extracts of Bacillus licheniformis. Biochem. biophys. Acta 73:530
    [Google Scholar]
  28. McCloy E. W. 1958; Lysogenicity and immunity to Bacillus phage W. J. gen. Microbiol 18:198
    [Google Scholar]
  29. Mach B., Reich E., Tatum E. L. 1963; Separation of the biosynthesis of the antibiotic polypeptide tyrocidine from protein biosynthesis. Troc. natn. Acad. Sci., U.S.A 50:175
    [Google Scholar]
  30. Mach B., Tatum E. L. 1964; Environmental control of amino acid substitutions in the biosynthesis of the antibiotic polypeptide tyrocidine. Proc. natn. Acad. Sci., U.S.A 52:876
    [Google Scholar]
  31. Magasanik B. 1961; Catabolite repression. Cold Spr. Harb. Symp. quant. Biol 26:249
    [Google Scholar]
  32. Maneval W. E. 1934; Rapid staining methods. Negative staining of micro-organisms. Science 80:292
    [Google Scholar]
  33. Meynell E. W. 1963; Reverting and non-reverting rough variants of Bacillus anthracis. J. gen. Microbiol 32:55
    [Google Scholar]
  34. Meynell E. W., Meynell G. G. 1964a; The roles of serum and carbon dioxide in capsule formation by Bacillus anthracis. J. gen. Microbiol 34:153
    [Google Scholar]
  35. Meynell G. G., Lawn A. M. 1965; Inheritance of capsule and the manner of cell-wall formation in Bacillus anthracis. J. gen. Microbiol 39:423
    [Google Scholar]
  36. Meynell G. G., Meynell E. W. 1964b; Presumptive evidence for a regulatory system controlling capsular synthesis in Bacillus anthracis. J. gen. Microbiol 37:1
    [Google Scholar]
  37. Meynell G. G., Meynell E. W. 1965; Biosynthesis of the polypeptide capsule and the cell wall of Bacillus anthracis. J. gen. Microbiol 39:vii
    [Google Scholar]
  38. Miles A. A., Misra S. S. 1938; The estimation of the bactericidal power of the blood. J. Hyg., Camb 38:732
    [Google Scholar]
  39. Nirenberg M. W., Matthaei J. H., Jones O. W., Martin R. G., Barondes S. H. 1963; Approximation of genetic code via cell-free protein synthesis directed by template RNA. Fed. Proc 22:55
    [Google Scholar]
  40. Pollock M. R. 1962 Exoenzymes. The Bacteria Ed. by Gunsalus I. C., Stanier R. Y. IV121 New York and London: Academic Press;
    [Google Scholar]
  41. Proom H., Woiwod A. J. 1949; The examination, by partition paper chromatography, of the nitrogen metabolism of bacteria. J. gen. Microbiol 3:319
    [Google Scholar]
  42. Puziss M., Rittenberg S. C. 1957; Studies on the anaerobic metabolism of Bacillus anthracis and Bacillus cereus. J. Bact 73:48
    [Google Scholar]
  43. Puziss M., Wright G. G. 1954; Studies on immunity in anthrax. IV. Factors influencing elaboration of the protective antigen of Bacillus anthracis in chemically defined media. J. Bact 68:474
    [Google Scholar]
  44. Puziss M., Wright G. G. 1959; Studies on immunity in anthrax. VII. Carbohydrate metabolism of Bacillus anthracis in relation to elaboration of protective antigen. J. Bact 78:137
    [Google Scholar]
  45. Rogers H. J., Mandelstam J. 1962; Inhibition of cell-wall-mucopeptide formation in Escherichia coli by benzylpenicillin and 6[d( — )-a-aminophenylacetamido]penicillanic acid (Ampicillin). Biochem. J 84:299
    [Google Scholar]
  46. Schaefer W. B. 1957; Studies on the inhibiting effect of carbon dioxide on the growth of two mutant strains of Mycobacterium tuberculosis. J. Bact 73:52
    [Google Scholar]
  47. Sterne M. 1937; Variation in Bacillus anthracis. Onderstepoort. J. vet. Sci 8:271
    [Google Scholar]
  48. Tempest D. W., Smith H. 1957; The effect of metabolite analogues on growth of Bacillus anthracis in the guinea-pig and on the formation of vinnence-deterniining factors. J. gen. Microbiol 17:739
    [Google Scholar]
  49. Thorne E. B. 1956; Capsule formation and glutamyl polypeptide synthesis by Bacillus anthracis and Bacillus subtilis. Symp. Soc. gen. Microbiol 6:68
    [Google Scholar]
  50. Thorne C. B. 1960; Biochemical properties of virulent and avirulent strains of Bacillus anthracis. Ann. N.Y. Acad. Sci 88:1024
    [Google Scholar]
  51. Thorne C. B., Leonard C. G. 1958; Isolation of d- and l-glutamyl polypeptides from culture nitrates of Bacillus subtilis. J. biol. Chem 233:1109
    [Google Scholar]
  52. Tomcsik J. 1956; Bacterial capsules and their relation to the cell wall. Symp. Soc. gen. Microbiol 6:41
    [Google Scholar]
  53. Torii M. 1959; Paper electrophoresis and detection on paper of glutamyl polypeptide. Biken’s J 2:259
    [Google Scholar]
  54. Umbarger E., Davis B. D. 1962 Pathways of amino acid biosynthesis. The Bacteria Ed. by Gunsalus I. C., Stanier R. Y. III167 New York and London: Academic Press;
    [Google Scholar]
  55. White P. B. 1946; Note on the selection of non-sporing and mucoid variants from a strain of B. anthracis and on the extraction from the mucoid form of the capsular substance. Biochem. J 40:808
    [Google Scholar]
  56. Winnick R. E., Winnick T. 1961; Biosynthesis of gramicidin S. II. Incorporation experiments with labelled amino acid analogs, and the amino acid activation process. Biochim. biophys. Acta 53:461
    [Google Scholar]
  57. Wood H. G., Stjernholm R. L. 1962 Assimilation of carbon dioxide by heterotrophic organisms. The Bacteria Ed. by Gunsalus I. C., Stanier R. Y. III41 New York and London: Academic Press;
    [Google Scholar]
  58. Wright G. G., Hedberg M. A., Feinberg R. J. 1951; Studies on immunity in anthrax. II. In vitro elaboration of protective antigen by non-proteolytic mutants of Bacillus anthracis. J. exp. Med 93:523
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-43-1-119
Loading
/content/journal/micro/10.1099/00221287-43-1-119
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error