1887

Abstract

SUMMARY: Anthranilic and -nitrobenzoic acids act as mutual inhibitors of both growth and substrate oxidation for and a flavobacterium which can utilize either substance as sole source of carbon, nitrogen and energy. Growth of the former bacterium on anthranilate induced, apparently simultaneously, both the transport system for anthranilate uptake and the enzymic mechanism necessary for its complete oxidation to CO and NH. Among the enzymes induced by anthranilate was the complete sequence that oxidizes catechol to β-oxoadipate; this was absent from organisms grown in fumarate or glucose media. The properties of the first enzyme in this sequence, a catechol-1, 2-oxygenase, differ in several features from those of the same enzyme induced in this bacterium by growth on -nitrobenzoic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-42-2-219
1966-02-01
2024-04-24
Loading full text...

Full text loading...

References

  1. Barnett J. A., Ingram M. 1955; Technique in the study of yeast assimilation reactions. J. appl. Bact 18:131
    [Google Scholar]
  2. Barrett J. T., Larsen A. D., Kallio R. E. 1953; The nature of the adaptive lag of Pseudomonas fluorescens towards citrate. J. Bact 65:187
    [Google Scholar]
  3. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. J. gen. Microbiol 23:457
    [Google Scholar]
  4. Behrman E. J. 1962; Tryptophan metabolism in Pseudomonas. Nature, Lond 196:150
    [Google Scholar]
  5. Cain R. B. 1958; The microbial metabolism of nitro-aromatic compounds. J. gen. Microbiol 19:1
    [Google Scholar]
  6. Cain R. B. 1961; The metabolism of protocatechuic acid by a Vibrio. Biochem. J 79:298
    [Google Scholar]
  7. Cain R. B. 1966; Induction of an anthranilate oxidation system during the metabolism of ortho-nitrobenzoate by certain bacteria. J. gen. Microbiol 42:197
    [Google Scholar]
  8. Cain R. B., Cartwright N. J. 1960a; On the properties of some aromatic ring-opening enzymes of species of the genus Nocardia. Biochim. Biophys. Acta 37:197
    [Google Scholar]
  9. Cain R. B., Cartwright N. J. 1960b; Intermediary metabolism of the nitrobenzoic acids by bacteria. Nature, Lond 185:868
    [Google Scholar]
  10. Cartwright N. J., Cain R. B. 1959a; Bacterial degradation of the nitrobenzoic acids. Biochem. J 71:248
    [Google Scholar]
  11. Cartwright N. J., Cain R. B. 1959b; Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem. J 73:305
    [Google Scholar]
  12. Clarke P. H., Meadow P. M. 1959; Evidence for the occurrence of permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J. gen. Microbiol 20:144
    [Google Scholar]
  13. Clifton C. E. 1946; Microbial assimilations. Advanc. Enzymol 6:269
    [Google Scholar]
  14. D’Angeli F., Koski R. E., Henderson L. M. 1955; Metabolism of compounds related to 3-hydroxyanthranilic acid. J. biol. Chem 214:781
    [Google Scholar]
  15. Doy C. H., Gibson F. 1961; The formation of 4-hydroxyphenyl-pyruvic acid and phenylpyruvic acid by tryptophan auxotrophs and wild-type Aerobacter aerogenes considered in relation to the general aromatic pathway. Biochim. Biophys. Acta 50:495
    [Google Scholar]
  16. Durham N. N. 1956; Bacterial oxidation of p-aminobenzoic acid by Pseudomonas fluorescens. J. Bact 72:333
    [Google Scholar]
  17. Durham N. N. 1958; Studies on the metabolism of p-nitrobenzoic acid. Can. J. Microbiol 4:141
    [Google Scholar]
  18. Durham N. N., Hubbard J. S. 1959; Antagonism of the oxidative assimilation of jj-aminobenzoic acid by p-aminosalicylic acid. Nature, Lond 184:1398
    [Google Scholar]
  19. Elvidge J. A., Linstead R. P., Orkin B. A., Sims P., Baer H., Pattison D. B. 1950; Unsaturated lactones and related substances. Part IV. Lactonic products derived from muconic acid. J. chem. Soc2228
    [Google Scholar]
  20. Glazko A. J., Wolf L. M., Dill W. A. 1949; Biochemical studies on chloramphenicoL I. Colorimetric methods for the determination of chloramphenicol and related nitrocompounds. Arch. Biochem 23:411
    [Google Scholar]
  21. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177:751
    [Google Scholar]
  22. Gundersen K., Jensen H. L. 1956; A soil bacterium decomposing organic nitrocompounds. Acta agric. scand 6:100
    [Google Scholar]
  23. Hayaishi O., Katagibi M., Rothberg S. 1957; Studies on oxygenases. Pyrocatechase. J. Mol. Chem 229:905
    [Google Scholar]
  24. Higashi T., Sakamoto Y. 1960; Oxidation of anthranilic acid catalysed by Pseudomonas cell-free extract. J. Biochem. (Tokyo 48:147
    [Google Scholar]
  25. Hosokawa K., Nakagawa H., Takeda A. 1961; Cofactor requirements for anthranilate oxidase. J. Biochem. (Tokyo 49:355
    [Google Scholar]
  26. Hughes D. E. 1951; A press for disrupting bacteria and other micro-organisms. Br. J. exp. Path 32:97
    [Google Scholar]
  27. Hunter A., Downs C. E. 1945; The inhibition of arginase by amino acids. J. biol. Chem 157:427
    [Google Scholar]
  28. Ke Y-H., Gee L. L., Durham N. N. 1959; Mechanism involved in the metabolism of nitrophenyl-carboxylic acid compounds by micro-organisms. J. Bact 77:593
    [Google Scholar]
  29. Kirkland J. J., Dubham N. N. 1963; Reversal of o-nitrobenzoic acid inhibition of microbial growth by amino acids. Nature, Lond 197:210
    [Google Scholar]
  30. Knox W. E. 1959; The enzymes of tryptophan metabolism. Symposium on Tryptophan Metabolism. Amer. Chem. Soc, Div. Med. Chem.137th MeetingAtlantic City, N.J
    [Google Scholar]
  31. Ladd J. N. 1962; Oxidation of anthranilic acid by a species of Achromobacter isolated from soil. Nature, Lond 194:1099
    [Google Scholar]
  32. Lineweaver H., Burk D. J. 1934; The determination of enzyme dissociation constants. J. Amer. chem. Soc 56:658
    [Google Scholar]
  33. Lingens F., Hildingeb M., Hellman H. 1958; 1-(o-Carboxyphenyl-amino)-1-desoxyfructose in der Tryptophan-Biosynthese. Biochim. Biophys. Acta 30:668
    [Google Scholar]
  34. Martin J. R., Durham N. N. 1962; Microbial oxidation of D-tryptophan. Arch. Biochem. Biophys 96:190
    [Google Scholar]
  35. Ornston L. N., Stanier R. Y. 1964; Mechanism of β-ketoadipate formation by bacteria. Nature, Lond 204:1279
    [Google Scholar]
  36. Sebald M., Veron M. 1963; Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105:879
    [Google Scholar]
  37. Simpson J. L., Evans W. C. 1953; The metabolism of nitrophenols by certain bacteria. Biochem. J 52:24
    [Google Scholar]
  38. Suda M., Tokuyama T. 1958 Quoted by Mehler A. H. 1961 Oxygenases Hayaishi O. London: Academic Press;
    [Google Scholar]
  39. Suda M., Hayaishi O., Oda Y. 1950; Studies on enzymatic adaptation. Med. J. Osaka Univ 2:21
    [Google Scholar]
  40. Taniuchi H., Hatanaka M., Kuno S., Hayaishi O., Nakajima M., Kurihara N. 1964; Enzymatic formation of catechol from anthranilic acid. J. Mol. Chem 239:2204
    [Google Scholar]
  41. Umbreit W. W., Burris R. H., Stauffer J. F. 1957 Manometric Techniques Minneapolis: Burgess Publ. Co;
    [Google Scholar]
  42. Wallace G. I., Neave S. L. 1927; The nitrite test as applied to bacterial cultures. J. Bact 14:377
    [Google Scholar]
  43. Wiss O., Hellman H. 1953; Über die Einführung phenolischer Hydroxylgruppen beim oxidativen Tryptophan-Stoffwechsel. Z. Naturforsch 8B:70
    [Google Scholar]
  44. Yanofsky C. 1956; Enzymatic studies with a series of tryptophan auxotrophs of Escherichia coli. J. Mol. Chem 224:783
    [Google Scholar]
  45. Yanofsky C., Rachmeleb M. 1958; The exclusion of free indole as an intermediate in the biosynthesis of tryptophan in Neurospora crassa. Biochim. Biophys. Acta 28:640
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-42-2-219
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error