Induction of an Anthranilate Oxidation System During the Metabolism of ortho-Nitrobenzoate by Certain Bacteria Free

Abstract

SUMMARY: a flavobacterium and certain other bacteria, when grown on -nitrobenzoate, accumulated anthranilate in the medium in the early stages of growth. The subsequent disappearance of this metabolite in growing cultures was always correlated with the appearance of an anthranilate oxidase system in the organisms. This phenomenon has the features of a typical enzyme adaptation except that the inducer is a by-product of the cells’ own metabolism; hence it has been termed ‘metabolite induction’. The results confirm previous suggestions that, in these micro-organisms, anthranilate is not an obligatory intermediate in the direct energy-producing pathway of -nitrobenzoate breakdown but is produced in a side reaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-42-2-197
1966-02-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Aronson A. I., Spiegelman S. 1961; Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim. Biophys. Acta 53:70
    [Google Scholar]
  2. Barnett J. A., Ingram M. 1955; Technique in the study of yeast assimilation reactions. J. appl. Bact 18:181
    [Google Scholar]
  3. Cain R. B. 1958; The microbial metabolism of nitro-aromatic compounds. J. gen. Microbiol 19:1
    [Google Scholar]
  4. Cain R. B. 1966; Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a flavobacterium. J. gen. Microbiol 42:219
    [Google Scholar]
  5. Cain R. B., Cartwright N. J. 1960a; On the properties of some aromatic ring-opening enzymes of species of the genus Nocardia. Biochim. Biophys. Acta 37:197
    [Google Scholar]
  6. Cain R. B., Cartwright N. J. 1960b; Intermediary metabolism of nitro-benzoic acids by bacteria. Nature, Lond 185:868
    [Google Scholar]
  7. Cartwright N. J., Cain R. B. 1959a; Bacterial degradation of the nitrobenzoic acids. Biochem. J 71:248
    [Google Scholar]
  8. Cartwright N. J., Cain R. B. 1959b; Bacterial degradation of the nitrobenzoie acids. 2. Reduction of the nitro group. Biochem. J 73:305
    [Google Scholar]
  9. Cohen G. N., Monod J. 1957; Bacterial permeases. Bact. Rev 21:196
    [Google Scholar]
  10. Durham N. N. 1958; Studies on the metabolism of p-nitrobenzoic acid. Can. J. Microbiol 4:141
    [Google Scholar]
  11. Glazko A. J., Wolf L. M., Dill W. A. 1949; Biochemical studies on chloramphenicol. I. Colorimetric methods for the determination of chloramphenicol and related nitrocompounds. Arch. Biochem 23:411
    [Google Scholar]
  12. Gross S. R. 1959; Enzymatic autoinduction and hypothesis of intracellular permeability barriers in Neurospora. Trans. N.Y. Acad. Sci 22:44
    [Google Scholar]
  13. Gross S. R., Gafford R. D., Tatum E. L. 1956; The metabolism of protocatechuic acid by Neurospora. J. biol. Chem 219:79
    [Google Scholar]
  14. Halvorson H. O., Spiegelman S. 1952; The inhibition of enzyme formation by amino acid analogues. J. Bact 64:207
    [Google Scholar]
  15. Hayaishi O., Stanier R. Y. 1951; Bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bact 62:691
    [Google Scholar]
  16. Higashi T., Sakamoto Y. 1960; Oxidation of anthranilie acid catalysed by Pseudomonas cell-free extract. J. Biochem. (Japan) 48:147
    [Google Scholar]
  17. Hughes D. E. 1953; In Adaptation in Micro-organisms. Symp. Soc. Gen. Microbiol 3:147
    [Google Scholar]
  18. Ke Y-H., Gee L. L., Durham N. N. 1959; Mechanism involved in the metabolism of nitrophenyl-carboxylic acid compounds by micro-organisms. J. Bact 77:593
    [Google Scholar]
  19. Kornberg H. L., Morris J. G. 1962; The influence of growth substrates on oxalo-acetate formation from β-hydroxyaspartate by Micrococcus denitrificans. Biochim. Biophys. Acta 65:378
    [Google Scholar]
  20. Kornberg H. L., Collins J. F., Bigley D. 1960; The influence of growth substrates on metabolic pathways in Micrococcus denitrificans. Biochim. Biophys. Ada 39:9
    [Google Scholar]
  21. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  22. Luria S. E., Delbrück M. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491
    [Google Scholar]
  23. Midgeley J. E. M., Hinshelwood C. 1962; The stability of an adaptive enzyme formed during growth of Bact. lactis aerogenes (Aerobader aerogenes) in D-arabinose. II. Reversion phenomena. Proc. roy. Soc, B 155:384
    [Google Scholar]
  24. Monod J. 1944; Inhibition de l’adaptation enzymatique chez B. coli en presence de 2,4-dinitrophénol. Ann. Inst. Pasteur 70:381
    [Google Scholar]
  25. Monod J., Cohn M. 1952; La biosynthèse induite des enzymes (adaptation enzymatique). Advanc. Enzymol 13:67
    [Google Scholar]
  26. Monod J., Pappenheimer A. M. Jun., Cohen-Bazire G. 1962; La cinétique de la biosynthèse de la β-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim. Biophys. Acta 9:648
    [Google Scholar]
  27. Oda Y., Yamamoto Y., Suda M. 1951; Studies on mechanism of enzymatic adaptation with special reference to the relation between the formation of adaptive enzymes and phosphate metabolism. Med. J. Osaka Univ. 2 125:
    [Google Scholar]
  28. Pollock M. R. 1953; Stages in enzyme adaptation. Adaptation in Micro-organisms. Symp. Soc. gen. Microbiol 3:150
    [Google Scholar]
  29. Reiner J. M. 1946; Effect of enzyme inhibitors on transformations of enzymes in the living cell. Proc. Soc. exp. Biol. Med 63:81
    [Google Scholar]
  30. Rickenberg H. V., Yanofsky C., Bonner D. M. 1953; Enzymatic deadaptation. J. Bact 66:683
    [Google Scholar]
  31. Robertson J. J., Halvorson H. O. 1957; The components of the maltozymase in yeast, and their behaviour during deadaptation. J. Bact 73:186
    [Google Scholar]
  32. Saz A. K., Slie R. B. 1954; The inhibition of organic nitro reductase by aureomycin in cell-free extracts. II. Cofactor requirements for the nitro reductase enzyme complex. Arch. Biochem. Biophys 51:5
    [Google Scholar]
  33. Sleeper B. P., Tsuchida M., Stanier R. Y. 1950; The bacterial oxidation of aromatic compounds. II. The preparation of enzymatically active dried cells, and the influence thereon of prior patterns of adaptation. J. Bact 59:129
    [Google Scholar]
  34. Spiegelman S. 1947; The dissociation of anaerobic metabolism from enzymatic adaptation in yeast. J. cell. comp. Physiol 301:315
    [Google Scholar]
  35. Spiegelman S. 1950 Modern aspects of enzymatic adaptation. The Enzymes 1Pt. 1167 Summer J. B., Myrback K. New York: Academic Press, Inc;
    [Google Scholar]
  36. Spiegelman S., Dunn R. 1947; Interaction between enzyme forming systems during adaptation. J. gen. Physiol 31:153
    [Google Scholar]
  37. Stanier R. Y. 1947; Simultaneous adaptation: a new technique for the study of metabolic pathways. J. Bact 54:339
    [Google Scholar]
  38. Sypherd P. S., Strauss N. 1963; Chloramphenicol-promoted repression of β-galacto-sidase synthesis in Escherichia coli. Proc. nain Acad. Sci., U.S. A 49:400
    [Google Scholar]
  39. Sypherd P. S., Strauss N., Treffers H. P. 1962; The preferential inhibition by chloramphenicol of induced enzyme synthesis. Biochem. Biophys. Res. ComM 7:477
    [Google Scholar]
  40. Taniuchi H., Hatanaka M., Kuno S., Hayaishi O., Nakajima M., Kurihara N. 1964; Enzymatic formation of catechol from anthranilic acid. J. Mol. Chem 239:2204
    [Google Scholar]
  41. Wainwright S.D., Pollock M. R. 1949; Enzyme adaptation in bacteria: fate of nitratase in nitrate-adapted cells grown in the absence of substrate. Br. J. exp. Path 30:190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-42-2-197
Loading

Most cited Most Cited RSS feed