1887

Abstract

The concentration of phospholipids in pigmented was higher than that in organisms lacking the photosynthetic pigments; the amounts of lipid phosphorus/mg. protein were, respectively, 157 and 90 mμmoles. Phosphatidylethanolamine comprised about 40% of the phospholipids, the remainder consisting of phosphatidic acid, phosphatidylglycerol and phosphatidylcholine. The phospholipids were confined to the membrane fraction of the organisms. As organisms adapted from the non-pigmented to the pigmented state the amount of lipid phosphorus/mg. protein increased. Experiments with radioactive phosphate showed phosphatidyl glycerol to incorporate label more rapidly than the other phospholipids. It is suggested that the formation of the photosynthetic pigments may be accompanied by modifications to the membrane structure so that it can accommodate more phospholipids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-38-1-55
1965-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/38/1/mic-38-1-55.html?itemId=/content/journal/micro/10.1099/00221287-38-1-55&mimeType=html&fmt=ahah

References

  1. Bartlett G. R. 1959; Phosphorus assay in column chromatography.. J. biol. Chem. 234:466
    [Google Scholar]
  2. Boatman E. S. 1964; Observations on the fine structure of spheroplasts of Rhodospirillum rubrum. J. cell. Biol. 20:297
    [Google Scholar]
  3. Bull M. J., Lascelles J. 1963; The association of protein synthesis with the formation of pigments in some photosynthetic bacteria.. Biochem. J. 87:15
    [Google Scholar]
  4. Cohen-Bazire G. 1963; Some observations on the organization of the photosynthetic apparatus in purple and green bacteria.. In Bacterial Photosynthesis p. 89 Ed. by Gest H., San Pietro A., Vernon L. P. Antioch Press; Yellow Springs, Ohio:
    [Google Scholar]
  5. Cohen-Bazire G., Kunisawa R. 1960; Some observations on the synthesis and function of the photosynthetic apparatus in Bhodospirillum rubrum. Proc. nat. Acad. Sci., Wash. 46:1543
    [Google Scholar]
  6. Cohen-Bazire G., Kunisawa R. J. 1963; The fine structure of Rhodospirillum rubrum.. J. cell. Biol. 16:401
    [Google Scholar]
  7. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria.. J. cell. comp. Physiol. 49:25
    [Google Scholar]
  8. Dawson R. M. C. 1960; A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples.. Biochem. J. 75:45
    [Google Scholar]
  9. Dawson R. M. C., Hemington N., Davenport J. B. 1962; Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses.. Biochem. J. 84:497
    [Google Scholar]
  10. Drews G., Giesbrecht P. 1963; Zur Morphogenese der Bakterien-4 Chromatophoren’ (Thylakoide) und zur Synthese des Bacteriochlorophylls bei Rhodopseudomonas spheroides und Rhodospirillum rubrum.. Zbl. Bakt. (1. Abt. Orig.) 190:508
    [Google Scholar]
  11. Gibson K. D., Neuberger A., Tait G. H. 1962; Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheroides. I. Effect of growth conditions.. Biochem. J. 83:550
    [Google Scholar]
  12. Gray G. M., Macfarlane M. G. 1964; On the identification of phosphatidylethanolamine in pigeon breast muscle.. Biochem. J. 91:16C
    [Google Scholar]
  13. Green D. E., Fleischer S. 1963; The role of lipids in mitochondrial electron transfer and oxidative phosphorylation.. Biochim. biophys. Acta 70:554
    [Google Scholar]
  14. Kaneshiro T., Marr A. G. 1962; Phospholipids of Azotobacter agilis, Agrobacterium tumefaciens and Escherichia coli.. J. Lipid Res. 3:184
    [Google Scholar]
  15. Kanfer J., Kennedy E. P. 1963; Metabolism and function of bacterial lipids. I. Metabolism of phospholipids in Escherichia coli B.. J. biol. Chem. 238:2919
    [Google Scholar]
  16. Kolb J. J., Weidner M. A., Toennies G. 1963; Microdetermination of lipid phosphorus as a measure of bacterial membrane substance.. Analyt. Biochem. 5:78
    [Google Scholar]
  17. Lascelles J. 1956; The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem. J. 62:78
    [Google Scholar]
  18. Lascelles J. 1959; Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in the activity of enzymes concerned in pyrrole synthesis.. Biochem. J. 72:508
    [Google Scholar]
  19. Lowry O. H., Rosebrough N.J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent.. J. biol. Chem. 193:265
    [Google Scholar]
  20. Macfarlane M. G. 1964 The phospholipids of bacterial membranes. (In the Press.)
    [Google Scholar]
  21. Newton J. W., Newton G. A. 1957; Composition of the photoactive subcellular particles from Chromatium. Arch. Biochem. Biophys. 71:250
    [Google Scholar]
  22. Richardson S. H., Hultin H. O., Green D. E. 1963; Structural proteins of membrane systems.. Proc. nat. Acad. Sci., Wash. 50:82
    [Google Scholar]
  23. Robrish S. A., Marr A. G. 1962; Location of enzymes in Azotobacter agilis. J. Bact. 83:158
    [Google Scholar]
  24. Schachman H. K., Pardee A. B., Stanier R. Y. 1953; Studies on the macro-molecular organization of bacterial cells.. Arch. Biochem. Biophys. 38:245
    [Google Scholar]
  25. Sistrom W. R. 1962; Observations on the relationship between formation of photopigments and the synthesis of protein in Rhodopseudomonas spheroides.. J. gen. Microbiol. 28:599
    [Google Scholar]
  26. Tuttle A. L., Gest H. 1959; Subcellular particulate systems and the photochemical apparatus of Rhodospirillum rubrum. Proc. nat. Acad. Sci., Wash. 45:1261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-38-1-55
Loading
/content/journal/micro/10.1099/00221287-38-1-55
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error