Genetic Transformation of by Deoxyribonucleate Preparations having Different Average Base Compositions Free

Abstract

The base contents of deoxyribonucleate (DNA) preparations from 7 strains of were determined chromatographically. Three non-overlapping classes were distinguished by mole % guanine + cytosine. These centred about the values 41% (2 strains), 42.3% (4 strains, including 8193), and 44·5% (strain 4403), Each of the 7 strains was capable of undergoing genetic transformation. DNA preparations from spontaneous streptomycin-resistant mutants of all 7 strains elicited transformation of recipient strains in all 49 possible combinations. Results with this group, therefore, do not support the hypothesis that success in transferring genetic information between 2 strains requires identity of DNA base contents.

Differences of reciprocal transformation frequencies and of 4 physiological characteristies (nitrate reduction, pigment production on vancomycin-containing agar, hydrolysis of gelatin, and growth at 28°) appeared to separate 6 of the strains of from the seventh ( 4103), which may properly be named .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-37-3-341
1964-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/37/3/mic-37-3-341.html?itemId=/content/journal/micro/10.1099/00221287-37-3-341&mimeType=html&fmt=ahah

References

  1. Bendich A. 1957; Methods for characterization of nucleic acids by base composition. In Methods in Enzymology 3715 Ed. by Colowick S. P., Kaplan N. O. New York: Academic Press;
    [Google Scholar]
  2. Berger U., Paepcke E. 1962; Untersuchungen liber die asaccharolytischen Neisserien des menschlichen Nasopharynx. Z. Hyg. Infekt.-Kr. 148:269
    [Google Scholar]
  3. Catlin B. W. 1960a; Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime. J. Bad. 79:579
    [Google Scholar]
  4. Catlin B. W. 1960b; Interspecific transformation of Neisseria by culture slime containing deoxyribonucleate. Science 131:608
    [Google Scholar]
  5. Catlin B. W. 1964; Reciprocal genetic transformation between Neisseria catarrhalis and Moraxella nonliquefaciens . J. gen. Microbiol. 37:369
    [Google Scholar]
  6. Catlin B. W., Cunningham L. S. 1958; Studies of extracellular and intracellular bacterial deoxyribonucleic acids. J. gen. Microbiol. 19:522
    [Google Scholar]
  7. Catlin B. W., Cunningham L. S. 1961; Transforming activities and base contents of deoxyribonucleate preparations from various neisseriae. J. gen. Microbiol. 26:303
    [Google Scholar]
  8. Dische Z. 1955; Color reactions of nucleic acid components. In The Nucleic Acids 1285 Ed. by Chargaff E., Davidson J. N. New York: Academic Press;
    [Google Scholar]
  9. Elrod R. P., Braun A. C. 1942; Pseudomonas aeruginosa: its role as a plant pathogen. J. Bad. 44:633
    [Google Scholar]
  10. Guild W. R. 1963; Evidence for intramolecular heterogeneity in pneumococcal DNA. J. mol. Biol. 6:214
    [Google Scholar]
  11. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bad. 66:24
    [Google Scholar]
  12. Kay D. 1954; The deoxyribonuclease of typhoid bacilli and its effect on typhoid bacteriophage nucleic acid. J. gen. Microbiol. 11:45
    [Google Scholar]
  13. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, Lond. 178:703
    [Google Scholar]
  14. Manual of Microbiological Methods 1957. Ed. by Committee on Bacteriological Technic, Society of American Bacteriologists New York: McGraw-Hill;
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. mol. Biol. 3:208
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. mol. Biol 5:109
    [Google Scholar]
  17. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. Annu. Rev. Microbiol. 17:329
    [Google Scholar]
  18. Marmur J., Schildkraut C. L., Doty P. 1961; The reversible denaturation of DNA and its use in studies of nucleic acid homologues and the biological relatedness of microorganisms. J. Chim. phys. p 945
    [Google Scholar]
  19. Marmur J., Seaman E., Levine J. 1963; Interspecific transformation in Bacillus. J. Bad 85:461
    [Google Scholar]
  20. McCarthy B. J., Bolton E. T. 1963; An approach to the measurement of genetic relatedness among organisms. Proc. nat. Acad. Sci., Wash. 50:156
    [Google Scholar]
  21. Murray R. G. E., Traunt J. P. 1954; The morphology, cell structure, and taxonomic affinities of the Moraxella. J. Bad. 67:13
    [Google Scholar]
  22. Ottolenghi E., Hotchkiss R. D. 1960; Appearance of genetic transforming activity in pneumoccal cultures. Science 132:1257
    [Google Scholar]
  23. Ottolenghi E., Hotchkiss R. D. 1962; Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J. exp. Med. 116:491
    [Google Scholar]
  24. Piéchaud M. 1961; Le groupe Moraxella. A propos des B5W-Bacterium anitratum Ann. Inst. Pasteur 100:suppl 674
    [Google Scholar]
  25. Ravin A. W. 1961; The genetics of transformation. Advanc. Genet. 10:61
    [Google Scholar]
  26. Schaub I. G., Hauber F. D. 1948; A biochemical and serological study of a group of identical unidentifiable Gram-negative bacilli from human sources. J. Bad. 56:379
    [Google Scholar]
  27. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. mol. Biol. 4:430
    [Google Scholar]
  28. Sub-committee on the family Neisseriaceae 1954. Preliminary report. Int. Bull. bact. Nomen. Taxon 4:95
    [Google Scholar]
  29. Sueoka N., Marmur J., Doty P. 1959; Heterogeneity in deoxyribonucleic acids II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine Nature, Lond. 183:1429
    [Google Scholar]
  30. Takahashi I. 1962; Genetic transformation of Bacillus subtilis by extracellular DNA. Biochem. biophys. Res. Commun. 7:467
    [Google Scholar]
  31. Topley and Wilson’s Principles of Bacteriology and Immunity 1955. , 4th ed. Ed. by Wilson G. S., Miles A. A. Baltimore: The Williams and Wilkins Co;
    [Google Scholar]
  32. Vischer E., Chargaff E. 1948; The separation and quantitative estimation of purines and pyrimidines in minute amounts. J. biol. Chem. 176:703
    [Google Scholar]
  33. Wyatt G. R. 1951; The purine and pyrimidine composition of deoxypentosenucleic acids. Biochem. J. 48:584
    [Google Scholar]
  34. Wyatt G. R., Cohen S. S. 1953; The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem. J. 55:774
    [Google Scholar]
  35. Zamenhof S. 1957; Preparation and assay of deoxyribonucleic acid from animal tissue. Meth. Enzymol. 3:702
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-37-3-341
Loading
/content/journal/micro/10.1099/00221287-37-3-341
Loading

Data & Media loading...

Most cited Most Cited RSS feed