1887

Abstract

SUMMARY: Thirty-three strains of , previously described as a species group by a quantitative study, were subjected to an extended schedule of tests used in bacterial classification and identification. Adansonian analysis by electronic computer confirmed previous results, indicating that the 33 strains should be treated as a species group. The 172 features coded for each strain were analysed by computer, yielding a ‘probability of occurrence’ of each feature within the species, . This output was then used to select features appropriate for diagnostic purposes. From the analyses it was also possible to measure the sensitivity of several methods for determining the presence or absence of characteristics such as pigment production and oxidation of gluconate to ketogluconate. The general applicability of the use of the computer to cooperative pooling of data by bacteriologists is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-37-2-181
1964-11-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/37/2/mic-37-2-181.html?itemId=/content/journal/micro/10.1099/00221287-37-2-181&mimeType=html&fmt=ahah

References

  1. Baerthlein K. 1918; Über bakterielle Variabilität, insbesondere sogennannte Bakterienmutationen. Zbl. Bakt (1 Abt. Orig) 81:428
    [Google Scholar]
  2. Bauer A. W., Roberts C. E. Jr, Kirby W. M. M. 1959–60; Single disc versus multiple disc and plate dilution techniques for antibiotic sensitivity testing. Antibiotics, 1959–1960 p 574
    [Google Scholar]
  3. Brisou J., Menantaud. 1957; Contribution à l’étude des tyrosinases microbiénnes. Bull. Ass. Dipl. Microbiol., Nancy 67:3
    [Google Scholar]
  4. Bühlmann X., Vischer W. A., Bruhin H. 1961a; Die Identifizierung nicht Pyocyanin-bildender Stämme von Pseudomonas aeruginosa. Zbl. Bakt (1. Abt. Orig)
    [Google Scholar]
  5. Bühlmann X., Vischer W. A., Bruhin H. 1961b; Identification of apyocyanogenic strains of Pseudomonas aeruginosa. J. Bad 82:787
    [Google Scholar]
  6. Burton M. O., Campbell J. J. R., Eagles B. A. 1948; The mineral requirements for pyocyanin production. Can. J. Res 26:15
    [Google Scholar]
  7. Burton M. O., Eagles B. A., Campbell J. J. R. 1947; The amino acid requirements for pyocyanin production. Can. J. Res 25:121
    [Google Scholar]
  8. Charrin Phisalix. 1892; Abolition persistante de la fonction chromogene du Bacillus pyocyaneus. C.r. Seanc. Soc. Biol., Paris 114:1565
    [Google Scholar]
  9. Colwell R. R. 1964; Proposal of a neotype, atcc 1 4216 for Pseudomonas aeruginosa (Sehroeter, 1872) Migula 1900 and request for an opinion. Int. Bull. baet. Nomencl. (in the Press)
    [Google Scholar]
  10. Colwell R. R., Liston J. 1961a; Taxonomic relationships among the pseudomonads. J. Bad 82:1
    [Google Scholar]
  11. Colwell R. R., Liston J. 1961b; Taxonomic analysis with the electronic computer of some Xanthonumas and Pseudomonas species. J. Bad 82:913
    [Google Scholar]
  12. Colwell R. R., Quadling C. 1962; Miniature tubes in diagnostic bacteriology. Can. J. Microbiol 8:813
    [Google Scholar]
  13. Curtin J. A., Petersdorf R. G., Bennett I. L. 1961; Pseudomonas bacteremia: review of ninety-one cases. Ann. intern. Med 54:1077
    [Google Scholar]
  14. Davis I., Sellers W., Orbach H., Weddington G. 1960; An evaluation of several media for the early detection of Pseudomonas aeruginosa encountered in clinical practice. J. lab. clin. Med 55:139
    [Google Scholar]
  15. Eisenberg P. 1914; Untersuchungen über die Variabilität der Bakterien. Zbl. Bakt. (1 Abt. Orig) 73:466
    [Google Scholar]
  16. Ewing W. H. 1962; Enterobacteriaceae. Biochemical methods for group differentiation Publ. Hlth Serv. Publ., Wash no 734
    [Google Scholar]
  17. Ewing W. H., Davis B. R., Reaves R. W. 1957; Phenylalanine and malonate media and their use in enteric bacteriology. Publ. Hlth Lab 15:153
    [Google Scholar]
  18. Falkow S. 1958; Activity of lysine decarboxylase as an aid in the identification of salmonellae and shigellae. Amer. J. clin. Path 29:598
    [Google Scholar]
  19. Gaby W. L. 1946; A study of the dissociative behaviour of Pseudomonas aeruginosa. J. Bad 51:217
    [Google Scholar]
  20. Gaby W. L., Free E. 1953; The occurrence and identification of non-pigmented strains of Pseudomonas aeruginosa in the clinical laboratory. J. Bad 65:746
    [Google Scholar]
  21. Gaby W. L., Free E. 1958; Differential diagnosis of Pseudomonas-like microorganisms in the clinical laboratory. J. Bad 76:442
    [Google Scholar]
  22. Georgia F. R., Poe C. F. 1932; Study of bacterial fluorescence in various media. II. The production of fluorescence in media made from peptones J. Bad 23:135
    [Google Scholar]
  23. Gessard C. 1890; Nouvelles recherches sur le microbe pyocyanique. Ann. Inst. Pasteur 4:88
    [Google Scholar]
  24. Gessard C. 1891; Des races du bacille pyocyanique. Ann. Inst. Pasteur 5:65
    [Google Scholar]
  25. Gessard C. 1892; Sur la fonction fluorescigene des microbes. Ann. Inst. Pasteur 6:801
    [Google Scholar]
  26. Gessard C. 1918; Technique d’identification des germes pyocyaniques. Ann. Inst. Pasteur 34:88
    [Google Scholar]
  27. Gould J. C., McLeod J. W. 1960; A study of the use of agglutinating sera and phage lysis in the classification of strains of Pseudomonas aeruginosa. J. Path. Bad 79:295
    [Google Scholar]
  28. Hadley P. 1937; Further advances in the study of microbic dissociation. J. infect. Dis. 60:129
    [Google Scholar]
  29. Haynes W. C. 1951; Pseudomonas aeruginosa—its characterization and identification. J. gen. Microbiol 5:939
    [Google Scholar]
  30. Haynes W. C., Rhodes L. J. 1962; Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bad 84:1080
    [Google Scholar]
  31. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bad 66:24
    [Google Scholar]
  32. King J. V., Campbell J. J. R., Eagles B. A. 1948; The mineral requirements for fluorescin production. Can. J. Res 26:514
    [Google Scholar]
  33. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J. lab. clin. Med 44:301
    [Google Scholar]
  34. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, Lond 178:703
    [Google Scholar]
  35. Liston J., Wiebe W., Colwell R. R. 1962; Preliminary studies of variations within species. Bad. Proc p 50
    [Google Scholar]
  36. Liston J., Wiebe W., Colwell R. R. 1963; A quantitative approach to the study of bacterial species. J. Bad 85:1061
    [Google Scholar]
  37. Lysenko O. 1961; Pseudommas—an attempt at a general classification. J. gen. Microbiol 25:379
    [Google Scholar]
  38. Martineatu B., Forget A. 1958; Routine use of Sabouraud maltose agar for the rapid detection of the bluish-green pigment of Pseudommas aeruginosa. J. Bad 76:118
    [Google Scholar]
  39. Meader P. D., Robinson G. H., Leonard V. 1925; Pyorubin, a red water-soluble pigment characteristic of B. pyocyaneus. Amer. J. Hyg 5:682
    [Google Scholar]
  40. Möller F. 1962; Quantitative methods in the systematics of Actinomycetales. IV. The theory and application of a probabilistic identification key. G. Microbiol 10:29
    [Google Scholar]
  41. Paton A. M. 1959; Enhancement of pigment production by Pseudomonas. Nature, Lond 184:1254
    [Google Scholar]
  42. Pulverer G., Korth H. 1962; Zur Biochemie und Fermentstructur von Pseudomonas aeruginosa. Zbl. Bakt (1. Abt. Orig.) 186:36
    [Google Scholar]
  43. Rhodes M. E. 1959; The characterization of Pseudomonas fluorescens. J. gen. Microbiol 21:221
    [Google Scholar]
  44. Rhodes M. E. 1961; The characterization of Pseudomonas fluorescens with the aid of an electronic computer. J. gen. Microbiol 25:331
    [Google Scholar]
  45. Ringen L. M., Drake C. H. 1952; A study of the incidence of Pseudomonas aeruginosa from various natural sources. J. Bad 64:841
    [Google Scholar]
  46. Rogers K. B. 1960; Pseudomonas infections in a children’s hospital. J. appi. Bad 23:533
    [Google Scholar]
  47. Seleen W. A., Stark C. N. 1943; Some characteristics of green-fluorescent pigment-producing bacteria. J. Bad 46:491
    [Google Scholar]
  48. Sherwood N. P., Johnson T. L., Radotincky I. 1926; Studies on Bacillus pyo-cyaneus. Kans. Univ. Sci. Bull 15:91
    [Google Scholar]
  49. Shewan J. M., Hodgkiss W., Liston J. 1954; A method for the rapid differentiation of certain non-pathogenic, asporogenous bacilli. Nature, Lond 173:208
    [Google Scholar]
  50. Shimwell J. L., Carr J. G., Rhodes M. E. 1960; Differentiation of Acetomonas and Pseudomonas. J. gen. Microbiol 23:283
    [Google Scholar]
  51. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15
    [Google Scholar]
  52. Silvestri L., Turri M., Hill L. R., Gilardi E. 1962; A quantitative approach to the systematics of Actinomycetes based on overall similarity. Symp. Soc. gen. Micro-biol 12:333
    [Google Scholar]
  53. Sneath P. H. A. 1956; Cultural and biochemical characteristics of the genus Chromobacterium. J. gen. Microbiol 15:70
    [Google Scholar]
  54. Society of American Bacteriologists 1957 Manual of Microbiological Methods. New York: McGraw-Hill Book Co., Inc;
    [Google Scholar]
  55. Thornley M. J. 1960; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. appi. Bad 23:37
    [Google Scholar]
  56. Verder E., Evans J. 1961; A proposed antigenic schema for the identification of strains of Pseudomonas aeruginosa. J. infed. Dis 109:183
    [Google Scholar]
  57. Wetmore P. W., Gochenour W. S. 1956; Comparative studies of the genus Malleo-myces and selected Pseudomonas species. J. Bact 72:79
    [Google Scholar]
  58. Williamson C. K. 1956; Morphological and physiological considerations of colonial variants of Pseudomonas aeruginosa. J. Bact 71:617
    [Google Scholar]
  59. Wood A. J., Baird E. A. 1943; Reduction of trimethylamine oxide by bacteria. J. Fish. Res. Bd Can 6:194
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-37-2-181
Loading
/content/journal/micro/10.1099/00221287-37-2-181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error