1887

Abstract

SUMMARY: Capsule formation by virulent strains of on nutrient agar is known to depend on incubation in air with added CO as well as the addition of serum or bicarbonate to the medium. The minimum effective concentration of CO varies with the pH of the medium in a way which shows that capsulation depends on a threshold concentration of bicarbonate in the medium. Serum is more effective than bicarbonate and appears to act by binding an agent which inhibits capsule formation since it is replaceable by activated charcoal. The inhibitor might be a fatty acid since certain acids prevented capsule formation. Capsules are formed on nutrient agar containing added bicarbonate only after the culture has become very dense which suggests that the organisms either inactivate the inhibitor or become resistant to its action as their growth rate falls on approaching the stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-34-1-153
1964-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/34/1/mic-34-1-153.html?itemId=/content/journal/micro/10.1099/00221287-34-1-153&mimeType=html&fmt=ahah

References

  1. Ajl S. J., Wehkman C. H. 1949; Anaerobic replacement of carbon dioxide. Proc. Soc. exp. Biol. Med., N.Y 70:522
    [Google Scholar]
  2. Davis B. D. 1948; Absorption of bacteriostatic quantities of fatty acid from media by large inocula of tubercle bacilli. Pub. Hlth Rep., Wash 63:455
    [Google Scholar]
  3. Davis B. D., Dubos R. J. 1947; The binding of fatty acids by serum albumen, a protective growth factor in bacteriological media. J. exp. Med 86:215
    [Google Scholar]
  4. Eastin J. D., Thorne C. B. 1968; Carbon dioxide fixation in Bacillus anthracis . J. Bact 85:410
    [Google Scholar]
  5. von Hofsten B. 1962; The effect of copper on the growth of Escherichia coli . Exp. Cell Res 26:606
    [Google Scholar]
  6. Holt L. B. 1962; The culture of Bordetella pertussis . J. gen. Microbiol 27:323
    [Google Scholar]
  7. Housewright R. D. 1962; The biosynthesis of homopolymeric peptides. The Bacteria 3389 Ed. by Gunsalus I. C., Stanier R. Y. New York and London: Academic Press;
    [Google Scholar]
  8. Ivanovics G. 1937; Unter welchen Bedingungen werden bei der Nahrboden-Zuchtung der Milzbrandbazillen Kapseln gebildet?. Zbl. Bakt. (1. Abt. Orig.) 138:449
    [Google Scholar]
  9. Knight B. C. J., Proom H. 1950; A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus . J. gen. Microbiol 4:508
    [Google Scholar]
  10. Lwoff A. 1947; Sur le rôle du serum dans le developpement de Moraxella lacunata et de Neisseria gonnorrhae . Ann. Inst. Pasteur 73:735
    [Google Scholar]
  11. Lwoff A., Monod J. 1947; Essai d’analyse du rôle de l’anhydride carbonique dans la croissance microbienne. Ann. Inst. Pasteur 73:323
    [Google Scholar]
  12. McCloy E. W. 1958; Lysogenicity and immunity to Bacillus phage W. J. gen. Microbiol 18:198
    [Google Scholar]
  13. M’Fadyean J. 1903; A peculiar staining reaction of the blood of animals dead of anthrax. J. comp. Path 16:35
    [Google Scholar]
  14. Meynell E. W. 1963; Reverting and non-reverting rough variants of Bacillus anthracis . J. gen. Microbiol 32:55
    [Google Scholar]
  15. Meynell G. G. 1961; Phenotypic variation and bacterial infection. Symp. Soc. gen. Microbiol 11:174
    [Google Scholar]
  16. Mikhailov B. Y., Rozhkov G. I., Tamarin A. L. 1960; A rapid method for the diagnosis and detection of Bacillus anthracis . J. Microbiol., Moscow 31:1997
    [Google Scholar]
  17. Nieman C. 1954; Influence of trace amounts of fatty acids on the growth of micro-organisms. Bact. Rev 18:147
    [Google Scholar]
  18. Nungester W. J. 1929; Dissociation of B. anthracis . J. infect. Dis 44:73
    [Google Scholar]
  19. Nye R. N., Lamb M. E. 1936; Increased carbon dioxide tension as an aid in the primary isolation of certain (mephitibic) pathogenic bacteria. J. Amer. med. Ass 106:107
    [Google Scholar]
  20. Pollock M. R. 1949; The effects of long-chain fatty acids on the growth of Haemophilus pertussis and other organisms. Symp. Soc. exp. Biol 3:193
    [Google Scholar]
  21. Renaux E. 1952; Culture de Bacillus anthracis en milieu calcique et en milieu oxalate. Ann. Inst. Pasteur 83:38
    [Google Scholar]
  22. Smith N. R., Ggrdon R. E., Clark E. E. 1952; Aerobic sporeforming bacteria. U.S. Dep. Agriculture MonographNo. 16
    [Google Scholar]
  23. Sterne M. 1937; Variation in Bacillus anthracis . Onderstepoort J. vet. Sci 8:271
    [Google Scholar]
  24. Thorne C. B. 1956; Capsule formation and glutamyl polypeptide synthesis by Bacillus anthracis and Bacillus subtilis . Symp. Soc. gen. Microbiol 6:68
    [Google Scholar]
  25. Thorne C. B., Gomez C. G., Housewright R. D. 1952; Synthesis of glutamic acid and glutamyl polypeptide by Bacillus anthracis. II. The effect of carbon dioxide on peptide production on solid medium. J. Bact 63:363
    [Google Scholar]
  26. Umbreit W. W., Burris R. H., Stauffer J. F. 1957 Manometric Techniques 3rd ed. Minneapolis: Burgess Publishing Co:
    [Google Scholar]
  27. Wood H. G., Stjernholm R. L. 1962; Assimilation of carbon dioxide by heterotrophic organisms. The Bacteria 341 Ed. by Gunsalus I. C., Stanier R. Y. New York and London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-34-1-153
Loading
/content/journal/micro/10.1099/00221287-34-1-153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error