1887

Abstract

SUMMARY: The base composition of purified DNA from 28 strains of acetic acid bacteria was determined. Most strains of the genus clustered closely together at 60.6–63.4 % (guanine + cytosine) of total base. All strains of the biotype lay within the range 55.4–64.0 % (guanine + cytosine). The close relationship and possible common phylo-genetic origin of the genera and is again stressed by these results. The base composition of DNA from acetic acid bacteria and from species of Pseudomonas was very similar, confirming the suspected close relationship between these groups. There is a noticeable agreement between the sequences of Acetobacter strains, arranged according to increasing % (guanine + cytosine) and arranged according to increasing enzymic equipment: strains with greater biochemical activity have on the whole also a higher % (guanine + cytosine) in DNA. The range of the compositional distribution of DNA molecules is on the whole broader in Acetobacter than in Gluconobacter. The results corroborate previous conclusions that both biotypes contain clusters of strains without species differentiation. A comparison of the paper chromatographic analysis with the method of thermal denaturation (‘melting point’) for estimating base composition of DNA showed that the latter method was to be preferred in routine analysis because of its ease, rapidity and reproducibility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-33-2-243
1963-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/33/2/mic-33-2-243.html?itemId=/content/journal/micro/10.1099/00221287-33-2-243&mimeType=html&fmt=ahah

References

  1. Belozersky A. N., Spirin A. S. 1958; A correlation between the compositions of deoxyribonucleic and ribonucleic acids.. Nature, Lond 182:111
    [Google Scholar]
  2. Bisset K. A. 1962; The phylogenetic concept in bacterial taxonomy.. Symp. Soc. gen. Microbiol 12:361
    [Google Scholar]
  3. Catlin B. W., Cunningham L. S. 1961; Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae.. J. gen. Microbiol 26:303
    [Google Scholar]
  4. DeLey J. 1961a; Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria.. J. gen. Microbiol 24:31
    [Google Scholar]
  5. DeLey J. 1961b; Comparative carbohydrate metabolism and localisation of enzymes in Pseudomonas and related bacteria.. J. appl. Bact 23:400
    [Google Scholar]
  6. DeLey J. 1962; Comparative biochemistry and enzymology in bacterial classification.. Symp. Soc. gen. Microbiol 12:164
    [Google Scholar]
  7. DeLey J., Schell J. 1962; Lactate and pyruvate catabolism in acetic acid bacteria.. J. gen. Microbiol 29:589
    [Google Scholar]
  8. Doty P., Marmur J., Sueoka N. 1959; The heterogeneity in properties and functioning of deoxyribonucleic acids.. Brookhaven Symp. Biol 12:1
    [Google Scholar]
  9. Falkow S., Ryman I. R., Washington O. 1962; DNA base composition of Proteus and Providence organisms.. J. Bact 83:1318
    [Google Scholar]
  10. Frateur J. 1950; Essai sur la systématique des Acétobacters.. Cellule 53:287
    [Google Scholar]
  11. Fulton M. 1943; The identity of Bacterium columbensis Castellani.. J. Bact 46:79
    [Google Scholar]
  12. Lanni F. 1960; Genetic significance of microbial DNA composition.. Perspectives in Biology and Medicine 3:418
    [Google Scholar]
  13. Lee K. Y., Wahl R., Barbu E. 1956; Contenu en base puriques et pyrimidiques des acides désoxyribonucléiques des bactéries.. Ann. Inst. Pasteur 91:212
    [Google Scholar]
  14. Markham R., Smith J. D. 1949; Chromatographic studies of nucleic acids.. Biochem. J 45:294
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms.. J. mol. Biol 3:208
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.. J. mol. Biol 5:109
    [Google Scholar]
  17. Marmur J., Seaman E., Levine J. 1963; Interspecific transformation in Bacillus.. J. Bact 85:461
    [Google Scholar]
  18. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.. J. mol. Biol 4:430
    [Google Scholar]
  19. Sevag M. G., Lackman D. B., Smolens J. 1938; The isolation of the components of streptococcal nucleoproteins in serologically active form.. J. biol. Chem 124:425
    [Google Scholar]
  20. Smith J. D., Wyatt G. R. 1951; The composition of some microbial deoxypentose nucleic acids.. Biochem. J 49:144
    [Google Scholar]
  21. Stanier R. Y. 1947; Acetic acid production from ethanol by fluorescent Pseudomonads.. J. Bact 54:191
    [Google Scholar]
  22. Sueoka N. 1961; Variation and heterogeneity of base composition of deoxyribonucleic acids: a compilation of old and new data.. J. mol. Biol 3:31
    [Google Scholar]
  23. Vischer E., Chargaff E. 1948; The separation and quantitative estimation of purines and pyrimidines in minute amounts.. J. biol. Chem 176:703
    [Google Scholar]
  24. Wyatt G. R. 1951; The purine and pyrimidine composition of deoxypentose-nucleic acids.. Biochem. J 48:584
    [Google Scholar]
  25. Warburg O., Christian W. 1942; Isolierung und Kristallisation des Gärungsferments Enolase.. Biochem. Z 310:384
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-33-2-243
Loading
/content/journal/micro/10.1099/00221287-33-2-243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error