1887

Abstract

SUMMARY: uses a wide variety of extracellular materials to accelerate the rate of morphogenesis. The stimulants of morphogenesis do not appear to exert their effect through the action of such factors as buffering, ionic strength, tonicity of the medium, or chelation.

Both glucose and histidine stimulate the rate of incorporation of amino acids into protein but at differing stages of development. Glucose stimulates throughout differentiation while histidine shows maximal stimulatory ability at preculmination (i.e. the stage just prior to complete fructification). The two compounds exhibit a mutual antagonism when added together.

It is concluded that glucose is probably acting as a primary energy source, whereas histidine is not acting in this manner or as a limiting amino acid for protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-32-2-195
1963-08-01
2022-05-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/32/2/mic-32-2-195.html?itemId=/content/journal/micro/10.1099/00221287-32-2-195&mimeType=html&fmt=ahah

References

  1. Bonner J. T. 1947; Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium, discoideum. J. exp. Zool 106:1
    [Google Scholar]
  2. Bonner J. T. 1959 The Cellular Slime Moulds Princeton N.J.: University Press;
    [Google Scholar]
  3. Bonner J. T., Dodd M. R. 1962; Aggregation territories in the cellular slime molds. Biol. Bull., Woods Hole 122:13
    [Google Scholar]
  4. Bradley S. G., Sussman M., Ennis H. L. 1956; Environmental factors affecting the aggregation of the cellular slime mold, Dictyostelium discoideum. J. Protozool 3:33
    [Google Scholar]
  5. Gerisch G. 1961; Zellfunktionen und Zellfunktionswechsel in der Entwicklung von Dictyostelium discoideum. III. Getrennte Beeinflussung von Zelldifferenzierung und Morphogenese. Roux Arch. EntwMech. Organ 153:158
    [Google Scholar]
  6. Gordon C. F., Wolfe A. L. 1960; Liquid scintillation counting of aqueous samples. Analyt. Chem 32:574
    [Google Scholar]
  7. Kinard F. E. 1957; Liquid scintillator for the analysis of tritium in water. Rev. sci. Instrum 28:293
    [Google Scholar]
  8. Krivanek J. O., Krivanek R. C. 1959; Chromatographic analysis of amino acids in the developing slime mold, Dictyostelium discoideum Raper. Biol. Bull., Woods Hole 116:265
    [Google Scholar]
  9. Liddel G. U., Wright B. E. 1961; The effect of glucose on respiration of the differentiating slime mold. Develop. Biol 3:265
    [Google Scholar]
  10. Martell A. E., Calvin M. 1952 Chemistry of the Metal Chelate New York N.Y.: Prentice-Hall, Inc;
    [Google Scholar]
  11. Steinberg D. 1960; A new approach to radioassay of aqueous solutions in the liquid scintillation spectrometer. Analyt. Biochem 1:23
    [Google Scholar]
  12. Sutherland E. W., Cori C. F., Haynes R., Olsen N. S. 1949; Purification of the hyperglycemic-glycogenolytic factor from insulin and from gastric mucosa. J. biol. Chem 180:825
    [Google Scholar]
  13. Wright B. E., Anderson M. L. 1960a; Protein and amino acid turnover during differentiation in the slime mold. I. Utilization of endogenous amino acids and proteins. Biochim. biophys. Acta 43:62
    [Google Scholar]
  14. Wright B. E., Anderson M. L. 1960b; Protein and amino acid turnover during differentiation in the slime mold. II. Incorporation of (35S) methionine into the amino acid pool and into protein. Biochim. biophys. Acta 43:67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-32-2-195
Loading
/content/journal/micro/10.1099/00221287-32-2-195
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error