1887
Preview this article:
Zoom in
Zoomout

THE BREAKDOWN AND BIOSYNTHESIS OF GLUTAMIC ACID, Page 1 of 1

| /docserver/preview/fulltext/micro/32/2/mic-32-2-157-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-32-2-157
1963-08-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/32/2/mic-32-2-157.html?itemId=/content/journal/micro/10.1099/00221287-32-2-157&mimeType=html&fmt=ahah

References

  1. Allison M. J., Bryant M. P., Doetsch R. W. 1962; Studies on the metabolic function of branched chain volatile fatty acids, growth factors for ruminococcus. I. Incorporation of isovalerate into leucine. J. Bad 83:523
    [Google Scholar]
  2. Anderson-Kotto I., Ehrensvard G., Reio L., Saluste E., Stjernholm R. 1954; Amino-acid formation and utilization in Neurospora. J. biol. Chem 210:445
    [Google Scholar]
  3. Barker H. A. 1937; On the fermentation of glutamic acid. Enzymologia 2:175
    [Google Scholar]
  4. Barker H. A., Weissbach H., Smyth R. D. 1958; A coenzyme containing pseudovitamin B12 . Proc. not. Acad. Sci., Wash 44:1093
    [Google Scholar]
  5. Bassham J. A., Kirk M. 1960; Dynamics of the photosynthesis of carbon compounds. I. Carboxylation reactions. Biochim. biophys. Acta 43:447
    [Google Scholar]
  6. Bilinski E., McConnell W. B. 1957; Studies on wheat plants using C14 compounds. IV. Distribution of C14 in glutamic acid, aspartic acid and threonine arising from acetate-l-C14 and -2-C14 . Canad J. Biochem. Physiol 35:365
    [Google Scholar]
  7. Black A. L., Kleiber M. 1957; The tricarboxylic acid cycle as a pathway for transfer of carbon from acetate to amino acids in the intact cow. Biochim. biophys. Acta 23:59
    [Google Scholar]
  8. Black A. L., Kleiber M., Smith A. H., Stewart D. N. 1957; Acetate as a precursor of amino acids of casein in the intact dairy cow. Biochim. biophys. Acta 23:54
    [Google Scholar]
  9. Clarke P., Meadow P. 1959; Evidence for the occurrence of permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J. gen. Microbiol 20:144
    [Google Scholar]
  10. Clifton C. E. 1942; The utilization of amino acids and related compounds by Clostridium tetani. J. Bad 44:179
    [Google Scholar]
  11. Cohen G. N., Nisman B., Cohen-Bazire G. 1948; Sort des amino-acides degrades par Cl. saccharobutyricum et Cl. sporogenes. Bull. Soc. Chim. biol., Paris 30:109
    [Google Scholar]
  12. Cutinelli C., Ehrensvard G., Reio L., Saluste E., Stjernholm R. 1951a; Acetic acid metabolism in Escherichia coli. I. General features, and the metabolic connection between acetate and glutamic acid, aspartic acid, glycine, alanine, valine, serine and threonine. Acta chem. scand 5:353
    [Google Scholar]
  13. Cutinelli C., Ehrensvard G., Reio L., Saluste E., Stjernholm R. 1951b; Acetic acid metabolism in Rhodospirillum rubrum under anaerobic conditions. II. Arkiv. Kemi 3:315
    [Google Scholar]
  14. Dagley S., Fewster M. E., Happold F. C. 1952; The bacterial oxidation of phenyl-acetic acid. J. Bad 63:327
    [Google Scholar]
  15. Ehrensvard G. 1955; Metabolism of amino acids and proteins. Annu. Rev. Biochem 24:275
    [Google Scholar]
  16. Ehrensvard G., Reio L., Saluste E., Stjernholm R. 1951; Acetic acid metabolism in Torulopsis utilis. III. Metabolic connection between acetic acid and various amino acids. J. biol. Chem 189:93
    [Google Scholar]
  17. Gilvarg C., Davis B. D. 1956; The role of the tricarboxylic acid cycle in acetate oxidation in Escherichia coli. J. biol. Chem 222:307
    [Google Scholar]
  18. Hoare D. S. 1962a; The photometabolism of [l-14C]acetate and [2-14C]-acetate by washed cell suspensions of Rhodospirillum rubrum. Biochim. biophys. Acta 59:723
    [Google Scholar]
  19. Hoare D. S. 1962b; The photoassimilation of acetate to glutamate in washed cell suspensions of Rhodospirillum rubrum. Biochem. J 84:94 P
    [Google Scholar]
  20. Hockenhull D. J. D., Wilkin G. D., Winder F. G. 1951; Production of α-keto-glutarate by Penicillium chrysogenum. Nature, Lond 168:1043
    [Google Scholar]
  21. Hug D. H., Weekman C. H. 1957; Transamination in Rhodospirillum rubrum. Arch. Biochem 72:369
    [Google Scholar]
  22. Jackins H. C., Barker H. A. 1951; Fermentative processes of the fusiform bacteria. J. Bact 61:101
    [Google Scholar]
  23. Koeppe R. E., Hill R. J. 1955; The incorporation of carboxyl and bicarbonate carbon into glutamic acid by the rat. J. biol. Chem 216:813
    [Google Scholar]
  24. Kogut M., Podoski E. P. 1953; Oxidative pathways in a fluorescent pseudomonas. Biochem. J 55:800
    [Google Scholar]
  25. Krebs H. A., Gurin S., Eggleston L. V. 1952; The pathway of oxidation of acetate in baker‘s yeast. Biochem. J 51:614
    [Google Scholar]
  26. Lockwood L. B., Stodola F. H. 1946; Preliminary studies on the production of α-ketoglutaric acid by Pseudomonas fluorescens. J. biol. Chem 164:81
    [Google Scholar]
  27. Rao M. R. R. 1957; Acetic acid bacteria. Annu. Rev. Microbiol 11:317
    [Google Scholar]
  28. Roberts R. B., Cowie D. B., Abelson P. H., Bolton E. T., Britten R. J. 1955; Studies of biosynthesis in Escherichia coli. Publ. Carneg. Instn no. 607
    [Google Scholar]
  29. Sekizawa Y., Maragoudakis M. E., Kerwar S. S., Flikke M., Baich A., King T. E., Cheldelin V. H. 1962; Glutamic acid biosynthesis in an organism lacking a Krebs tricarboxylic acid cycle. Biochem. Biophys. Res. Comm 9:361
    [Google Scholar]
  30. Smith D. C., Bassham J. A., Kirk M. 1961; Dynamics of the photosynthesis of carbon compounds. II. Amino acid synthesis. Biochim. biophys. Acta 48:299
    [Google Scholar]
  31. Tomlinson N. 1954a; Carbon dioxide and acetate utilization by Clostridium kluyveri. II. Synthesis of amino acids. J. biol. Chem 209:585
    [Google Scholar]
  32. Tomlinson N. 1954b; Carbon dioxide and acetate utilization by Clostridium kluyveri. III. A new path of glutamic acid synthesis. J. biol. Chem 209:605
    [Google Scholar]
  33. Wachsman J. T. 1956; The role of a-ketoglutarate and mesaconate in glutamate fermentation by Clostridium tetanomorphum. J. biol. Chem 223:19
    [Google Scholar]
  34. Wachsman J. T., Barker H. A. 1955; Tracer experiments on glutamate fermentation by Clostridium tetanomorphum. J. biol. Chem 217:695
    [Google Scholar]
  35. Walker T. K., Hall A. N., Hopton J. W. 1951; Chromatographic detection of pyruvic, dimethylpyruvic and a-ketoglutaric acids in cultures of Aspergillus niger on various substrates. Nature, Lond 168:1042
    [Google Scholar]
  36. Wang C. H., Christensen B. E., Cheldelin Y. H. 1953; Conversion of acetate and pyruvate to glutamic acid in yeast. J. biol. Chem 201:683
    [Google Scholar]
  37. Weimberg R., Doudoroff M. 1955; The oxidation of L-arabinose by Pseudomonas saccharophila. J. biol. Chem 217:607
    [Google Scholar]
  38. Whiteley H. R. 1957; Fermentation of amino acids by Micrococcus aerogenes. J. Bact 74:324
    [Google Scholar]
  39. Woods D. D., Clifton C. E. 1937; Hydrogen production and amino acids utilization by Clostridium tetanomorphum. Biochem. J 32:1774
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-32-2-157
Loading
/content/journal/micro/10.1099/00221287-32-2-157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error