Effects of Glucose on the Production by of Hydrogen Sulphide from Cysteine Free

Abstract

SUMMARY:

Glucose and certain other sugars accelerated hydrogen sulphide production from -cysteine by washed cells of (strain Crookes) which had been grown in the presence of -cysteine. On the other hand, glucose or some other sugars in protein hydrolysate media containing -cysteine suppressed the synthesis of an enzyme(s) which mediates the formation of hydrogen sulphide from -cysteine. Glucose accelerated sulphide formation from -cysteine by sonicated preinduced cells, although activity was unstable to such treatment. Both effects of glucose were influenced by the amino acid content of the medium. Sulphide production probably resulted through the action of cysteine desulphydrase; certain evidence suggested that a transaminase linked to β-mercaptopyruvate desulphurase also may have functioned. Apparently glucose repressed the induction of one or more enzymes concerned with cysteine degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-30-3-485
1963-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/30/3/mic-30-3-485.html?itemId=/content/journal/micro/10.1099/00221287-30-3-485&mimeType=html&fmt=ahah

References

  1. Bethge P. O. 1953; On the volumetric determination of hydrogen sulfide and soluble sulfides. Analyt. chim. Acta 9:129
    [Google Scholar]
  2. Britten R. J., McClure F. T. 1962; The amino acid pool in Escherichia coli. Bact. Rev. 26:292
    [Google Scholar]
  3. Christensen H. N. 1955 Mode of transport of amino acids into cells. A Symposium on Amino Acid Metabolism63 McElroy W. D., Glass H. B. Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  4. Cohn M., Horibata K. 1959; Physiology of the inhibition by glucose of the induced synthesis of the β-galactoside-enzyme system of Escherichia coli. J. Bact. 78:624
    [Google Scholar]
  5. Conway E. J. 1950 Microdiffusion Analysis and Volumetric Error, 3rd ed. Chap. 10 London: Crosby, Lockwood and Son Ltd;
    [Google Scholar]
  6. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact. 60:17
    [Google Scholar]
  7. Delwiche E. A. 1951; Activators for the cysteine desulfhydrase system of an Escherichia coli mutant. J. Bact. 62:717
    [Google Scholar]
  8. Desnuelle P., Fromageot C. 1939; La décomposition anaérobie de la cysteine par Bacterium coli. I. Existence d’une cystéinase, ferment d’adaptation. Enzymologia 6:80
    [Google Scholar]
  9. Edelman I. S. 1961; Transport through biological membranes. Annu. Rev. Physiol. 23:37
    [Google Scholar]
  10. Freundlich M., Lichstein H. C. 1960; Inhibitory effect of glucose on tryptophanase. J. Bact. 80:633
    [Google Scholar]
  11. Fromageot C. 1951 Desulfhydrases. The Enzymes 1part 21237 Sumner J. B., Myrbäck Κ. New York: Academic Press, Inc;
    [Google Scholar]
  12. Fromageot C, Wookey E., Chaix P. 1940; Sur la dégradation anaérobie de la cysteine par la désulfurase du foie. Enzymologia 9:198
    [Google Scholar]
  13. Gale E. F., Folkes J. P. 1953; The assimilation of amino acids by bacteria. 14. Nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53:483
    [Google Scholar]
  14. Gross S. R. 1959; Enzymatic autoinduction and the hypothesis of intracellular permeability barriers in Neurospora. Trans. N. Y. Acad. Science Ser. n 22:44
    [Google Scholar]
  15. Hanson J., Mantel E. 1953; Untersuchungen über den intermediaren S-Stoffwechsel. IV. Über die im Substrat gelegenen Bedingungen der Desulfurierbarkeit durch Escherichia coli. Hoppe-Seyl. Z. 295:141
    [Google Scholar]
  16. Hylin J. W., Wood J. L. 1959; Enzymatic formation of polysulfides from mercapto-pyruvate. J. biol. Chem. 234:2141
    [Google Scholar]
  17. Kallio R. E. 1951; Function of pyridoxal phosphate in desulfhydrase systems of Proteus morganii. J. biol. Chem. 192:371
    [Google Scholar]
  18. Kallio R. E., Porter J. R. 1950; The metabolism of cystine and cysteine by Proteus vulgaris and Proteus morganii. J. Bact. 60:607
    [Google Scholar]
  19. Kleinzeller A., Kotyk A. 1961 Membrane Transport and Metabolism. New York: Academic Press, Inc;
    [Google Scholar]
  20. Kun E., Bradin J. L., Dechary J. M. 1956; Correlation between CO2 and H2S production by Endamoeba histolytica. Biochim. biophys. Acta 19:153
    [Google Scholar]
  21. Magasanik B. 1957; Nutrition of bacteria and fungi. Annu. Rev. Microbiol. 11:221
    [Google Scholar]
  22. Magasanik B. 1962; Catabolite repression. Cellular Regulatory Mechanisms. Cold Spr. Harb. Symp. quant. Biol. 26:249
    [Google Scholar]
  23. Magasanik B., Magasanik A. K., Neidhardt F. C. 1959 Regulation of growth and composition of the bacterial cell. CIBA Foundation Symposium Regulation of Cell Metabolism334 Wolstenholme G. E. W., O’Connor C. M. London: J. and A. Churchill Ltd;
    [Google Scholar]
  24. Meister A. 1957 Biochemistry of the Amino Acids316 New York: Academic Press, Inc;
    [Google Scholar]
  25. Meister A., Fraser P. E., Tice S. V. 1954; Enzymatic desulfuration of β-mer-captopyruvate to pyruvate. J. biol. Chem. 206:561
    [Google Scholar]
  26. Metaxas M. A., Delwiche E. A. 1955; The l-cysteine desulfhydrase of Escherichia coli. J. Bact. 70:735
    [Google Scholar]
  27. Olitzki A. L. 1954; Hydrogen sulphide production by non-multiplying organisms and its inhibition by antibiotics. J. gen. Microbiol. 11:160
    [Google Scholar]
  28. Pardee A. B. 1961; Response of enzyme synthesis and activity to environment. Microbial Reaction to Environment Symp. Soc. gen. Microbiol. 11:19
    [Google Scholar]
  29. Pardee A., Prestidge L. S. 1961; The initial kinetics of enzyme induction. Biochim. biophys. Acta 49:77
    [Google Scholar]
  30. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. I., Britten R. J. 1955 Studies in Biosynthesis in Escherichia coli Washington, D.C.: Carnegie Inst;
    [Google Scholar]
  31. Siekevitz P. 1959 On the meaning of intracellular structure for metabolic regulation. CIBA Foundation Symposium Regulation of Cell Metabolism17 Wolstenholme G. E. W., Μ. O’Connor C. London: J. & A. Churchill Ltd;
    [Google Scholar]
  32. Singer T. P., Kearney E. B. 1955 Enzymatic pathways in the degradation of sulfur-containing amino acids. A Symposium on Amino Acid Metabolism558 McElroy W. D., Glass H. B. Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  33. SÖrbo B. 1957; Enzymic transfer of sulfur from mercaptopyruvate to sulfite or sul-finates. Biochim. biophys. Acta 24:324
    [Google Scholar]
  34. Suda M., Saigo T., Ichihara A. 1954; The action of l-cysteine desulfhydrase. I. l-cysteine desulfhydrase isolated from bacteria. Med. J. Osaka Univ. 5:127 Chem. Abstr. 48:11508ab
    [Google Scholar]
  35. Tamiya A. 1954; Studies on aerobic decomposition of cysteine by Escherichia coli. I. J. Biochem. (Tokyo) 41:199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-30-3-485
Loading
/content/journal/micro/10.1099/00221287-30-3-485
Loading

Data & Media loading...

Most cited Most Cited RSS feed