1887

Abstract

SUMMARY: The catabolic pathways for the utilization of glucose and gluconate in one representation of each of five species of Arthrobacter were studied by the respirometric method (Wang 1958). The results indicate that these Arthrobacter organisms can be classified into two groups on the basis of their catabolic behaviour. The first group () relies primarily on the operation of the Embden-Meyerhof-Parnas pathway and, to some extent, the hexose monophosphate pathway for the assimilation of glucose. In the second group () glucose is catabolized primarily by way of the intermediary formation of gluconate; the Entner-Doudoroff and the hexose monophosphate pathways appear to be the major routes for the assimilation of glucose and gluconate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-29-3-389
1962-11-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/29/3/mic-29-3-389.html?itemId=/content/journal/micro/10.1099/00221287-29-3-389&mimeType=html&fmt=ahah

References

  1. Bergey’s Manual of Determinative Bacteriology. 1957 , 7th ed.. Ed. by Breed R. S., Murray E. G. D., Smith N. R. London: Baillière, Tindall & Cox.;
    [Google Scholar]
  2. Chaplin C. E. 1957; Life cycles in Arthrobacter pascens and Arthrobacter terregens. Canad. J. Microbiol. 3 103
    [Google Scholar]
  3. Clark F. E. 1955; Designation of Corynebacterium ureafaciens Krebs and Eggleston as Arthrobacter ureafaciens, comb.nov. (Symposium on Taxonomy). Bact. Rev. 19 273
    [Google Scholar]
  4. Conn H. J. 1928; A type of bacteria abundant in productive soils, but apparently lacking in certain soils of low productivity. Bull. N.Y. St. Agric. Exp. Sta. no. 138
    [Google Scholar]
  5. Conn H. J., Dimmick. 1947; Soil bacteria similar in morphology in Mycobacterium and Corynebacterium. J. Bad. 54 291
    [Google Scholar]
  6. Cummins C. S. 1959; Taxonomic position of Arthrobacter. Nature, Lond. 184 831
    [Google Scholar]
  7. DeLey J. 1961; Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. gen. Microbiol. 24 31
    [Google Scholar]
  8. Fukin G. M., Vandermark P. J. 1952; Evidence for the TCA cycle in Corynebacterium creatinovorans.. J. Bad. 64 887
    [Google Scholar]
  9. Chiretti F., Barron E. S. G. 1954; Pathway of glucose oxidation in Corynebacterium, creatinovorans. Biochim. biophys. Acta 15 445
    [Google Scholar]
  10. Jensen H. L. 1952; The coryneform bacteria. Annu. Rev. Microbiol. 6 77
    [Google Scholar]
  11. Kitos P. A., Wang C. H., Mohler B. A., King T. E., Cheldelin V. H. 1958; Glucose and gluconate dissimilation in Acetobacter suboxydans. J. biol. Chem. 233 1295
    [Google Scholar]
  12. Kuhn D. A., Starr M. P. 1960; Arthrobacter atrocyaneus n.sp., and its blue pigment. Arch. Mikrobiol 36 175
    [Google Scholar]
  13. Lochhead A. G. 1958; Two new species of Arthrobacter requiring respectively vitamin B12 and the ‘terregens’ factor. Arch. Mikrobiol. 31 163
    [Google Scholar]
  14. Lochhead A. G., Burton M. O. 1953; An essential bacterial growth factor produced by microbial synthesis. Canad. J. Bot. 31 7
    [Google Scholar]
  15. Lochhead A. G., Burton M. O. 1957; Qualitative studies of soil micro-organisms. XIV. Specific vitamin requirements of the predominant bacterial flora. Canad. J. Microbiol. 3 35
    [Google Scholar]
  16. Morris J. G. 1960; Studies on the metabolism of Arthrobacter globiformis. J. gen. Microbiol. 22 564
    [Google Scholar]
  17. Moore S., Link K. P. 1940; Carbohydrate characterization. J. biol. Chem. 133 293
    [Google Scholar]
  18. Sacks L. E. 1954; Observations on the morphogenesis of Arthrobacter citreus, spec. J. Bad. 67 342
    [Google Scholar]
  19. Stern I. J., Wang C. H., Gilmour C. M. 1960; Comparative catabolism of carbo-hydrates in Pseudomonas species. J. Bact. 79 601
    [Google Scholar]
  20. Sundman V. 1958; Morphological comparison of some Arthrobacter species. Canad. J. Microbiol. 4 221
    [Google Scholar]
  21. Taylor C. B. 1938; Further studies of Bacterium globiforme and the incidence of this type of organism in Canadian soils. Soil Sci. 46 307
    [Google Scholar]
  22. Wang C. H. 1962; Metabolism studies by radio respirometry. Atomlight 21 1
    [Google Scholar]
  23. Wang C. H., Bjerre S. 1961; Comparative carbohydrate catabolism in Acetobacter species. Fed. Proc. 19 84a
    [Google Scholar]
  24. Wang C. H., Ikeda G. J. 1961; Biosynthesis of C4 acids in Pseudomonas fluorescens KB1. Biochem. J. 79 614
    [Google Scholar]
  25. Wang C. H., Krackov J. K. 1962; The catabolic fate of glucose in Bacillus subtilis.. J. biol. Chem. (in the Press)
    [Google Scholar]
  26. Wang C. H., Stern I. J., Gilmour C. M., Klungsoyr S., Reed D. J., Bialy J. J., Christensen B. E., Cheldelin V. H. 1958; Comparative study of glucose catabolism by the radio-respirometric method. J. Bact. 76 207
    [Google Scholar]
  27. White C. G., Helf S. 1956; Suspension counting in scintillation gels. Nucleonics 14 46
    [Google Scholar]
  28. Wood H. G., Lifson N., Lorber V. 1945; The position of fixed carbon in glucose from rat liver glycogen. J. biol. Chem. 159 475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-29-3-389
Loading
/content/journal/micro/10.1099/00221287-29-3-389
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error