The Catabolism of Cystathionine by Free

Abstract

SUMMARY: L-Cystathionine is rapidly degraded to homocysteine, pyruvate and ammonia by cell-free enzyme preparations of an auxotrophic strain of which requires pyridoxin, glycine or serine for growth. One molecule of each of the products was formed from each molecule of cystathionine throughout the course of the reaction. The preparation did not form pyruvate from L-serine and L-alanine (which were possible intermediates); it is concluded that the cleavage is a single step reaction. After precipitation with ammonium sulphate and dialysis the enzyme required both pyridoxal phosphate and magnesium ions for full activity, but no dependence on magnesium was found with preparations from another strain. The reaction was inhibited totally by cyanide and cupricions and partially by isonicotinic acid hydrazide and sulphydryl compounds (cysteine, homocysteine, glutathione). An auxotrophic strain of which grew with methionine or homocysteine, but not with cystathionine, did not contain the enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-29-2-353
1962-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/29/2/mic-29-2-353.html?itemId=/content/journal/micro/10.1099/00221287-29-2-353&mimeType=html&fmt=ahah

References

  1. Anslow W. P., Simmonds S., du Vigneaud V. 1946; The synthesis of the isomers of cystathionine and a study of their availability in sulfur metabolism. J. biol. Chem 166:35
    [Google Scholar]
  2. Barton-Wright E. C. 1952; Methionine, cysteine and tyrosine. In The Microbiological Assay of the Vitamin B-Complex and Amino Acids p 142 London: Sir Isaac Pitman and Sons, Ltd;
    [Google Scholar]
  3. Binkley F. 1950; Enzymatic cleavage of thioethers. J. biol. Chem 186:287
    [Google Scholar]
  4. Binkley F. 1955; Catalytic cleavage of thioethers. J. Amer. chem. Soc 77:501
    [Google Scholar]
  5. Binkley F., Hudgins A. 1953; Comparative studies of sulfur metabolism. Fed. Proc 12:178
    [Google Scholar]
  6. Binkley F., Anslow W. P., du Vigneaud V. 1942; The formation of cysteine from ll-S(β-amino-β-earboxyethyl)-homoeysteine by liver tissue. J. Mol. Chem 143:559
    [Google Scholar]
  7. Binkley F., Christensen G. M., Jensen W. N. 1952; Pyridoxine and the transfer of sulfur. J. biol. Chem 194:109
    [Google Scholar]
  8. Bolton E. T., Cowie D. B., Sands M. K. 1952; Sulfur metabolism in Escherichia coli. III. The metabolic fate of sulfate sulfur J. Bad 63:309
    [Google Scholar]
  9. Carroll W. R., Stacey G. W., du Vigneaud V. 1949; α-Ketobutyric acid as a product in the enzymatic cleavage of cystathionine. J. biol. Chem 180:375
    [Google Scholar]
  10. Conway E. J., O’Malley E. 1942; Microdiffusion methods. Ammonia and urea using buffered absorbents. (Revised methods for ranges greater than 10 µg. N.) Biochem. J 36:655
    [Google Scholar]
  11. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact 60:17
    [Google Scholar]
  12. Fischer G. A. 1957; The cleavage and synthesis of cystathionine in wild type and mutant strains of Neurospora crassa. Biochim. biophys. Acta 25:50
    [Google Scholar]
  13. Friedeman T. E., Haugen G. E. 1943; Pyruvic acid. II. The determination of keto acids in blood and urine J. biol. Chem 147:415
    [Google Scholar]
  14. Gale E. F., Stephenson M. 1938; Factors influencing bacterial deamination. II. Factors influencing the activity of dl-serine deaminase in Bacterium coli Biochem. J 32:392
    [Google Scholar]
  15. Gibson F., Woods D. D. 1960; The synthesis of methionine by suspensions of Escherichia coli. Biochem. J 74:160
    [Google Scholar]
  16. Gots J. S., Koh W. Y. 1950; Methionine synthesis in Escherichia coli. Bact. Proc p 134
    [Google Scholar]
  17. Guest J. R., Woods D. D. 1962; Metabolic interrelationships between cobalamin and folic acid in the synthesis of methionine by Escherichia coli. 2 Europaisches Symposion iiber Vitamin BVI und Intrinsic Factor p 686Ed. by Heinrich H. C. Stuttgart: Ferdinand Enke Verlag;
    [Google Scholar]
  18. Horowitz N. H. 1947; Methionine synthesis in Neurospora. The isolation of cystathionine J. biol. Chem 171:255
    [Google Scholar]
  19. Lampen J. O., Roefke R. R., Jones M. J. 1947; Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements Arch. Biochem 13:55
    [Google Scholar]
  20. Markham R. 1942; A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J 36:790
    [Google Scholar]
  21. Matsuo Y., Greenberg D. M. 1958a; A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties J. biol. Chem 230:545
    [Google Scholar]
  22. Matsuo Y., Greenberg D. M. 1958b; A crystalline enzyme that cleaves homoserine and cystathionine. II. Prosthetic group J. biol. Chem 230:561
    [Google Scholar]
  23. Matsuo Y., Greenberg D. M. 1959a; A crystalline enzyme that cleaves homoserine and cystathionine. III. Coenzyme resolution, activators and inhibitors J. biol. Chem 234:507
    [Google Scholar]
  24. Matsuo Y., Greenberg D. M. 1959b; A crystalline enzyme that cleaves homoserine and cystathionine. IV. Mechanism of action, reversibility and substrate specificity J. biol. Chem 234:516
    [Google Scholar]
  25. Metzler D. E., Snell E. E. 1952a; Deamination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts J. biol. Chem 198:353
    [Google Scholar]
  26. Metzler D. E., Snell E. E. 1952; Deamination of serine. II. d-Serine dehydrase, a vitamin B2 enzyme from Escherichia coli J. biol. Chem 198:363
    [Google Scholar]
  27. Mickle H. 1948; Tissue disintegrator. J. roy. micr. Soc 68:10
    [Google Scholar]
  28. Mitchell H. K. 1953; Growth factors in relation to studies of genetics of microrganisms. Symposium on Nutrition and Growth Factors VIth Congr. int. Microbiol p 75
    [Google Scholar]
  29. Morris J. G., Woods D. D. 1959; Inter-relationships of serine, glycine and vitamin B6 in the growth of mutants of Escherichia coli. J. gen. Microbiol 20:576
    [Google Scholar]
  30. Rowbury R. J. 1961; The synthesis of cystathionine by Escherichia coli. Biochem. J 81:42p
    [Google Scholar]
  31. Rowbury R. J. 1962; Control of cystathionine formation in Escherichia coli by methionine. Biochem. J 82:24p
    [Google Scholar]
  32. Stephenson M., Gale E. F. 1937; Factors influencing bacterial deamination. I. The deamination of glycine, dl-alanine and l-glutamic acid by Bacterium coli Biochem. J 31:1316
    [Google Scholar]
  33. Tatum E. L., Shemin D. 1954; Mechanism of tryptophan synthesis in Neurospora. J. biol. Chem 209:671
    [Google Scholar]
  34. Toennies G., Kolb J. J. 1951; Techniques and reagents for paper chromatography. Analyt. Chem 23:823
    [Google Scholar]
  35. Wijesundera S., Cboss M. J., Woods D. D. 1960; Vitamin B6 and glycine in the synthesis of methionine by suspensions of Escherichia coli. J. gen. Microbiol 22:786
    [Google Scholar]
  36. Wijesundera S., Woods D. D. 1953; Cystathionine in relation to methionine synthesis by Bacterium coli. J. gen. Microbiol 9:iii
    [Google Scholar]
  37. Wood W. A., Gunsalus I. C. 1949; Serine and threonine deaminase of Escherichia coli: activators for a cell-free enzyme. J. biol. Chem 181:171
    [Google Scholar]
  38. Wood W. A., Gunsalus I. C., Umbreit W. W. 1947; Function of pyridoxal phosphate: resolution and purification of the tryptophanase enzyme of Escherichia coli. J. biol. Chem 170:313
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-29-2-353
Loading
/content/journal/micro/10.1099/00221287-29-2-353
Loading

Data & Media loading...

Most cited Most Cited RSS feed