1887

Abstract

SUMMARY: Ability to produce colicines I, E1, E2, K or B was transferred to strain LT2 by growth in broth with suitable colicinogenic strains of or When LT2 (), i.e. carrying the colicine I factor, or LT2 () were grown overnight in broth with LT2 (non-colicinogenic), 50 % of the latter became colicinogenic; LT2 () and LT2 () did not transmit; LT2 () transmitted to only 0.1 % of the acceptor population. But LT2 carrying either or in addition to or , transmitted both factors.

When overnight broth cultures of LT2 () and LT2 were mixed and incubated 40 % of the latter acquired by 20 hr. (when the viable count had doubled); but only 0.02 % acquired in 3 hr. The low initial transfer results from the fact that in a stock culture of LT2 () only 1/5000 bacteria are ‘competent donors’, able to transmit The later large increase in the proportion of colicinogenic bacteria probably results from ‘epidemic spread’ of the factor amongst the acceptor population, initiated by the few acceptor bacteria which originally receive it. It is supposed that most bacteria which have just acquired become competent donors. In a doubly colicinogenic strain most competent donors transmit both colicine factors.

Aeration by shaking during incubation interfered with transmission of colicinogeny, probably by abolishing the prolonged phase of slow growth of unaerated cultures. Growth in the presence of acriflavine did not ‘cure’ LT2 () or LT2 () () of colicinogeny, nor of ability to transmit.

LT2 () and LT2 () supported the epidemic spread of or about as well as did LT2 ; but in LT2 () the spread of was greatly reduced and that of somewhat reduced. The prior presence in an acceptor strain of one of the readily transmissible factors, or , did not interfere with the epidemic spread of the other. But LT2 () did not become a competent donor on accepting and, by inference, from LT2 () ().

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-28-4-671
1962-09-01
2022-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/28/4/mic-28-4-671.html?itemId=/content/journal/micro/10.1099/00221287-28-4-671&mimeType=html&fmt=ahah

References

  1. Alfoldi L., Jacob F., Wollman E. L. 1957; Zygose letale dans des croisements entre souches colicinogenes et non-colicinogenes d‘'Escherichia coli. C.R. Acad. Sci., Paris 244:2974
    [Google Scholar]
  2. Alfoldi L., Jacob F., Wollman E. L., Maze R. 1958; Sur le determinisme genetique de la colicinogenie. C.R. Acad. Sci., Paris 246:3531
    [Google Scholar]
  3. Baron L. S., Carey W. F., Spilman W. M. 1959; Genetic recombination between Escherichia coli and Salmonella typhimurium. Proc. nat. Acad. Sci., Wash. 45:976
    [Google Scholar]
  4. Cavalli L. L., Lederberg J., Lederberg E. M. 1953; An infective factor controlling sex compatibility in Bacterium coli. J. gen. Microbiol. 8:89
    [Google Scholar]
  5. Clowes R. C. 1958; Investigation of the genetics of cysteineless mutants of Salmonella typhimurium by transduction. J. gen. Microbiol. 18:154
    [Google Scholar]
  6. Clowes R. C. 1961; Colicine factors as fertility factors in bacteria: Escherichia coli K-12. Nature, Lond. 190:988
    [Google Scholar]
  7. Fredericq P. 1954a; Transduction genetique des proprietes colicinogenes chez Escherichia coli et Shigella sonnei. C.R. Soc. Biol., Paris 148:399
    [Google Scholar]
  8. Fredericq P. 1954b; Intervention du facteur de polarite sexuelle F dans la transduction des proprietes colicinogenes chez Escherichia coli. C.R. Soc. Biol., Paris 148:746
    [Google Scholar]
  9. Fredericq P. 1956; Resistance et immunite aux colicines. C.R. Soc. Biol., Parts 150:1514
    [Google Scholar]
  10. Fredericq P. 1957; Colicins. Annu. Rev. Microbiol. 11:7
    [Google Scholar]
  11. Fredericq P., Betz-Bareau M. 1953a; Transfert genetique de la propriete de produire un antibiotique. C.R. Soc. Biol., Paris 147:1653
    [Google Scholar]
  12. Fredericq P., Betz-Bareau M. 1953b; Transfert genetique de la propriete colicinogene en rapport avec la polarite F des parents. C.R. Soc. Biol., Paris 147:2043
    [Google Scholar]
  13. Gratia A. 1925; Sur un remarquable exemple d’antagonisme entre deux souches de Colibacille. C.R. Soc. Biol., Paris 93:1040
    [Google Scholar]
  14. Hamon Y. 1956; Etude generate du transfert des proprietes colicinogenes. C.R. Acad. Sci., Paris 242:2064
    [Google Scholar]
  15. Hirota Y. 1956; Artificial elimination of the F factor in Bact. coli K12. Nature, Lond. 178:92
    [Google Scholar]
  16. Hirota Y. 1960; The effect of acridine dyes on mating type factors in Escherichia coli. . Proc. nat. Acad. Sci., Wash. 46:57
    [Google Scholar]
  17. Hirota Y., Iijima T. 1957; Acriflavine as an effective agent for eliminating F-factor in Escherichia coli K-12. Nature, Lond. 180:655
    [Google Scholar]
  18. Jacob F., Schaeffer P., Wollman E. L. 1960; Episomic elements in bacteria. Microbial Genetics, Symp. Soc. gen. Microbiol. 10:67
    [Google Scholar]
  19. Jacob F., Wollman E. L. 1958; Les episomes, elements genetiques ajoutes. C.R. Acad. Sci., Paris 247:154
    [Google Scholar]
  20. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Meth. Med. Res. 3:5
    [Google Scholar]
  21. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact. 63:399
    [Google Scholar]
  22. Miyake T., Demerec M. 1959; Salmonella-Escherichia hybrids. Nature, Lond. 183:1586
    [Google Scholar]
  23. Ozeki H., Howarth S. 1961; Colicine factors as fertility factors in bacteria: Salmonella typhimurium strain LT2. Nature, Lond. 190:986
    [Google Scholar]
  24. Ozeki H., Stocker B. A. D. 1958; Phage-mediated transduction of colicinogeny in Salmonella typhimurium. Heredity 12:525 (abstract)
    [Google Scholar]
  25. Ozeki H., Stocker B. A. D., de Margerie H. 1959; Production of colicine by single bacteria. Nature, Lond. 184:337
    [Google Scholar]
  26. Smith S. M., Stocker B. A. D. 1962; Colicinogeny and recombination. Brit. med. Bull. 18:46
    [Google Scholar]
  27. Stocker B. A. D. 1960; Introduction: micro-organisms in genetics. Microbial Genetics, Symp. Soc. gen. Microbiol. 10:1
    [Google Scholar]
  28. Yura T. 1956; Evidence of non-identical alleles in purine-requiring mutants of Salmonella typhimurium. Publ. Carneg. Instn 612:63
    [Google Scholar]
  29. Zinder N. D. 1960; Sexuality and mating in Salmonella. Science 131:924
    [Google Scholar]
  30. Zinder N. D. 1961; A bacteriophage specific for F–Salmonella strains. Science 133:2069
    [Google Scholar]
  31. Zinder N. D., Lederberg J. 1952; Genetic exchange in Salmonella. J. Bact. 64:679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-28-4-671
Loading
/content/journal/micro/10.1099/00221287-28-4-671
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error