1887

Abstract

SUMMARY: An examination was made of the ability of amino acids, purines and related compounds, and fatty acids to stimulate growth of in biotin-deficient medium and to restore the synthesis of nucleic acids and protein. Adenine, adenosine, aspartic acid and Casamino acids (Difco) each stimulated growth to some extent and brought about a partial restoration of nucleic acid and protein synthesis. Oleic acid also stimulated growth, but the effect was much slower than that brought about by the other biotin-sparing compounds tested and it was not accompanied by a restoration of nucleic acid and protein synthesis. Stimulation of growth in biotin-deficient media supplemented with aspartic acid + oleic acid was greater than the stimulation brought about by these compounds singly. During growth of the yeast in biotin-deficient media supplemented with this or certain other mixtures of biotin-sparing compounds there was a well defined exponential phase of growth which was not apparent during growth of the yeast in unsupplemented biotin-deficient medium. But the final cell crop in these supplemented media was still only about half of that obtained in biotin-optimal medium. These results are discussed in relation to the role of biotin in the synthesis of various yeast cell constituents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-28-1-147
1962-04-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/28/1/mic-28-1-147.html?itemId=/content/journal/micro/10.1099/00221287-28-1-147&mimeType=html&fmt=ahah

References

  1. Abrams R., Bentley M. 1955; Transformation of inosinic acid to adenylic and guanylic acids in a soluble enzyme system. J. Amer. chem. Soc. 77:4179
    [Google Scholar]
  2. Ahmad F., Rose A. H., Garg N. K. 1961; Effect of biotin deficiency on the synthesis of nucleic acids and protein by Saccharomyces cerevisiae. J. gen. Microbiol. 24:69
    [Google Scholar]
  3. Bowen W. J., Kerwin T. D. 1956; A simple method for assaying adenosine triphosphate and adenosine diphosphate in mixtures. J. biol. Chem. 220:9
    [Google Scholar]
  4. Chamberlain N., Cutts N. S., Rainbow C. 1952; The formation of pigment and arylamine by yeasts. J. gen. Microbiol. 7:54
    [Google Scholar]
  5. Chamberlain N., Rainbow C. 1954; The formation of diazotisable amine and hypoxanthine by yeast: possible implications in the biosynthesis of purines. J. gen. Microbiol. 11:180
    [Google Scholar]
  6. Chambers E. A., Delwiche E. A. 1954; Biotin and succinate decarboxylation. J. Bact. 68:131
    [Google Scholar]
  7. Cheng A. L. S., Greenberg S. M., Deuel H. J., Melnick D. 1951; Biotin-like activity of positional and stereoisomers of octadecenoic acids. J. biol. Chem. 192:611
    [Google Scholar]
  8. Delwiche E. A. 1950; A biotin function in succinic acid decarboxylation by Propioni-bacterium pentosaceum. J. Bact. 59:439
    [Google Scholar]
  9. Dunwell J. L., Ahmad F., Rose A. H. 1962; Changes in the polysaccharide composition of yeast resulting from biotin deficiency. Biochim. biophys. Acta 51:604
    [Google Scholar]
  10. Hagen P., -O. & Rose A. H. 1961; Studies on the biochemical basis of the low maximum temperature in a psychrophilic cryptococcus. J. gen. Microbiol. 27:89
    [Google Scholar]
  11. Hamilton G. A., Westheimer F. H. 1959; A crystalline decarboxylase without biotin. J. Amer. chem. Soc. 81:2277
    [Google Scholar]
  12. Hofmann K., O’Leary W. M., Yoho C. W., Liu T. H. 1959; Further observations on the lipide stimulation of bacterial growth. J. biol. Chem. 234:1672
    [Google Scholar]
  13. Hunter G. D., Goodsall R. A. 1961; Lipo-amino acid complexes from Bacillus megaterium and their possible role in protein synthesis. Biochem. J. 78:564
    [Google Scholar]
  14. Katsuki H. 1959a; Studies on the metabolic function of biotin. III. Accumulation of α-keto acids in biotin-deficient cultures of Piricularia oryzae. J. Biochem., Tokyo 46:621
    [Google Scholar]
  15. Katsuki H. 1959b; Studies on the metabolic function of biotin. IV. Function of biotin in α-keto acid oxidation. J. Biochem., Tokyo 46:979
    [Google Scholar]
  16. Koser S. A., Wright M. H., Dorfman A. 1942; Aspartic acid as a partial substitute for the growth-promoting effect of biotin on Torula cremoris. Proc. Soc. exp. Biol., N.Y. 51:204
    [Google Scholar]
  17. Lane M. D., Halenz D. R. 1960; Transcarboxylation and CO2 ‘exchange’ catalyzed by purified propionyl carboxylase. Biochem. biophys. res. Commun. 2:436
    [Google Scholar]
  18. Lardy H. A., Potter R. L., Elvehjem C. A. 1947; The role of biotin in bicarbonate utilization by bacteria. J. biol. Chem. 169:451
    [Google Scholar]
  19. Lichstein H. C., Christman J. R. 1948; The role of biotin and adenylic acid in amino acid deaminases. J. biol. Chem. 175:649
    [Google Scholar]
  20. Lichstein H. C., Umbreit W. W. 1947; Biotin activation of certain deaminases. J. biol. Chem. 170:423
    [Google Scholar]
  21. Lynen F., Knappe J., Lorch E., Jütting G., Ringelmann E. 1959; Die bioehemische Funktion des Biotins. Angew. Chem. 71:481
    [Google Scholar]
  22. Markham R. 1942; A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J. 36:790
    [Google Scholar]
  23. Miller L., Houghton J. A. 1945; The miero-Kjeldahl determination of the nitrogen content of amino acids and proteins. J. biol. Chem. 159:373
    [Google Scholar]
  24. Moat A. G., Emmons E. K. 1954; The amino acid nutrition of yeasts in relationship to biotin deficiency. J. Bact. 68:687
    [Google Scholar]
  25. Moat A. G., Wilkins C. N., Friedman H. 1956; A role for biotin in purine biosynthesis. J. biol. Chem. 223:985
    [Google Scholar]
  26. Nadkarni G. B., Sreenivasan A. 1957; The metabolism of serine in biotin deficiency. Proc. Indian Acad. Sci. 46, B:229
    [Google Scholar]
  27. Newman M. S., Anderson R. J. 1933; The chemistry of the lipids of yeast. I. The composition of the acetone-soluble fat. J. biol. Chem. 102:219
    [Google Scholar]
  28. Nickerson W. J. 1961; Role of biotin in the multiplication of yeasts. Bact. Proc.177
    [Google Scholar]
  29. Northcote D. H., Horne R. W. 1952; The chemical composition and structure of the yeast cell wall. Biochem. J. 51:232
    [Google Scholar]
  30. Potter R. L., Elvehjem C. A. 1948; Biotin and the metabolism of Lactobacillus arabinosus.. J biol. Chem. 172:531
    [Google Scholar]
  31. Rose A. H. 1960a; Excretion of nicotinic acid and nicotinic acid adenine dinucleotide by biotin-defieient yeast. Nature, Lond. 186:139
    [Google Scholar]
  32. Rose A. H. 1960b; Excretion of nicotinic acid by biotin-defieient Saccharomyces cerevisiae. J. gen. Microbiol. 23:143
    [Google Scholar]
  33. Rose A. H., Nickerson W. J. 1956; Secretion of nicotinic acid by biotin-dependent yeasts. J. Bact. 72:324
    [Google Scholar]
  34. Shive W., Rodgers L. L. 1947; Involvement of biotin in the biosynthesis of oxalacetic and α-ketoglutaric acids. J. biol. Chem. 169:453
    [Google Scholar]
  35. Smith A. M., Agiza A. H. 1957; The determination of amino acids colorimetrically by the ninhydrin reaction. Analyst 76:623
    [Google Scholar]
  36. Stokes J. L., Larsen A., Gunness M. 1947; Biotin and the synthesis of aspartic acid by micro-organisms. J. biol. Chem. 167:613
    [Google Scholar]
  37. Sund R. F., Ravel J. M., Shive W. 1958; Ornithine-citrulline enzyme synthesis in biotin-defieient cells of Streptococcus lactis. J. biol. Chem. 231:807
    [Google Scholar]
  38. Tietz A., Ochoa S. 1959; Metabolism of propionic acid in animal tissues. V. Purification and properties of propionyl carboxylase. J. biol. Chem. 234:1394
    [Google Scholar]
  39. Traub A., Lichstein H. C. 1956; Cell permeability; a factor in the biotin-oleate relationship in Lactobacillus arabinosus. Arch. Biochem. Biophys. 62:222
    [Google Scholar]
  40. Wahba A. J., Shive W. 1954; A role of aspartic acid in purine biosynthesis. J. biol. Chem. 211:155
    [Google Scholar]
  41. Wakil S. J. 1961; Mechanism of fatty acid synthesis. J. lipid Res. 2:1
    [Google Scholar]
  42. Williams V. R., Fieger E. A. 1946; Oleic acid as a growth stimulant for Lactobacillus casei. J. biol. Chem. 166:335
    [Google Scholar]
/content/journal/micro/10.1099/00221287-28-1-147
Loading
/content/journal/micro/10.1099/00221287-28-1-147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error