1887

Abstract

SUMMARY: A salmonella phage which attacks only flagellated bacteria (Sertic & Boulgakov, 1936) has been studied. Tests with naturally occurring strains, and with artificial serotypes to which foreign H antigens had been transduced, have shown that sensitivity depends on the H antigen: bacteria with antigens of the g-complex are resistant, and with antigens or Arizona are sensitive only to appropriate host-range mutants. Tests with non-mo tile and motile variants of the same strains showed that paralysed (non-motile H) as well as non-flagellated bacteria are resistant and thus that the flagella must be active as well as of correct antigenic type. Where resistance was due to absence of suitable flagella, it was associated with impaired adsorption of phage. Removal of the flagella from a sensitive strain led to diminished adsorption; a similar result was obtained when the bacteria were artificially paralysed in various different ways. No adsorption to detached flagella was detected, probably because they were inactive. Adsorption of the phage led to immobilization and agglutination of the bacteria, probably by a direct effect on the flagella. Electron micrographs showed phage particles attached to flagella, and infection could evidently follow adsorption to distal parts of a flagellum. The genome of the infecting particle may perhaps reach the bacterial body by being injected into an active flagellum at the point of initial attachment, and then travelling inside the flagellum.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-25-2-253
1961-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/25/2/mic-25-2-253.html?itemId=/content/journal/micro/10.1099/00221287-25-2-253&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959; Bacteriophages. Appendix: Methods of study of bacterial viruses. New York: Interscience Publishers, Inc;
    [Google Scholar]
  2. Anderson E. S. 1957; Visual observation of deoxyribonucleic acid changes in bacteria during growth of bacteriophage. Nature; Lond: 1801336
    [Google Scholar]
  3. Anderson E. S., Felix A. 1953; Degraded Vi strains and variation in Vi-phage II of Salmonella typhi . J. gen. Microbiol 8:408
    [Google Scholar]
  4. Anderson E. S., Armstrong J. A., Niven J. S. F. 1959; Fluorescence microscopy: observation of virus growth with aminoacridines. In Virus Growth and Variation. Symp. Soc. gen. Microbiol 9:224
    [Google Scholar]
  5. Andrewes F. W. 1922; Studies in group-agglutination. I. The salmonella group and its antigenic structure. J. Path. Bact 25:505
    [Google Scholar]
  6. Andrewes F. W. 1925; Studies in group-agglutination. II. The absorption of agglutinin in the diphasic salmonellas. J. Path. Bact 28:345
    [Google Scholar]
  7. Astbury W. T., Beighton E., Weibull C. 1955; The structure of bacterial flagella. In Fibrous Proteins and their Biological Significance. Symp. Soc. exp. Biol 9:282
    [Google Scholar]
  8. Beardsley R. E. 1960; Lysogenicity in Agrobacterium tumefaciens . J. Bact 80:180
    [Google Scholar]
  9. Beighton E., Porter A. M., Stocker B. A. D. 1958; X-ray and related studies on the flagella of non-motile bacteria. Biochim. biophys. Acta 29:8
    [Google Scholar]
  10. Braun H. 1918; Das Wesen der Weil-Felix’schen Reaktion auf Fleckfieber. Berl. Klin. Wschr 55:637
    [Google Scholar]
  11. Brenner S., Streisinger G., Horne R. W., Champe S. P., Barnett L., Benzer S., Rees M. W. 1959; Structural components of bacteriophage. J. mol. Biol 1:281
    [Google Scholar]
  12. Burnet F. M. 1930; Bacteriophage activity and the antigenic structure of bacteria. J. Path. Bact 33:647
    [Google Scholar]
  13. Cohen S. S. 1949; Growth requirements of bacterial viruses. Bact. Rev 13:1
    [Google Scholar]
  14. Craigie J. 1931; Studies on the serological reactions of the flagella of B. typhosus . J. Immunol 21:417
    [Google Scholar]
  15. Craigie J., Brandon K. F. 1936; Bacteriophage specific for the O-resistant V form of B. typhosus . J. Path. Bact 43:223
    [Google Scholar]
  16. Craigie J., Yen C. H. 1938; The demonstration of types of B. typhosus by means of preparations of Type II Yi-phage. Canad. publ. Hlth. J 29:448
    [Google Scholar]
  17. Douglas S. H., Taylor J., McMath W. F. T. 1951; A new salmonella type isolated from a baby-Salm. neasden . Mon. Bull. Ministr. Hlth. Lab. Ser 10:250
    [Google Scholar]
  18. Dukes P. P., Kozloff L. M. 1959; Phosphatases in bacteriophages T2, T4 and T5. J. biol. Chem 234:534
    [Google Scholar]
  19. Duncan J. T. 1935; Inactivation of the ‘H’ antigen by dilute mineral acid. Brit. J. exp. Path 16:405
    [Google Scholar]
  20. Edwards P. R., Bruner D. W. 1939; The demonstration of phase variation in Salmonella abortus-equi . J. Bact 38:63
    [Google Scholar]
  21. Edwards P. R., Moran A. B., Bruner D. W. 1946; Flagella and flagellar antigens in non-motile Salmonella cultures. Proc. Soc. exp. Biol., N.Y 62:296
    [Google Scholar]
  22. Edwards P. R., Ewing W. H. 1955 Identification of Enterobacteriaceae Minneapolis, Minnesota: Burgess Publishing Company;
    [Google Scholar]
  23. Edwards P. R., Fife M. A., Ramsey V. H. 1959; Studies on the Arizona group of Enterobacteriaceae. Bact. Rev 23:155
    [Google Scholar]
  24. Felix A. 1930; The qualitative serum diagnosis of enteric fevers. Lancet i:505
    [Google Scholar]
  25. Friewer F. I., Leifson E. 1952; Non-motile flagellated variants of Salmonella typhimurium . J. Path. Bact 64:223
    [Google Scholar]
  26. Furness G., Rowley D. 1955; Transfer of motility by Escherichia coli K12 to E. coli. B . J. gen. Microbiol 12:v
    [Google Scholar]
  27. Hershey A. D., Chase M. 1952; Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. gen. Physiol 36:39
    [Google Scholar]
  28. Hirsch W. 1947; A new bacterial variant: the non-motile H form. J. Hyg., Camb 45:417
    [Google Scholar]
  29. Kato E. 1954; Influence of the hydrogen ion concentration of culture media upon the development of e,n,x factors of Salmonella abortus-equi . Jap. J. vet. Res 2:189
    [Google Scholar]
  30. Kauffmann F., Henning M. W. 1952; Two new salmonella types (S. Worcester and S. Johannesburg) from South Africa. Acta path, microbiol. scand 31:586
    [Google Scholar]
  31. Kellenberger E., Séchaud J., Ryter A. 1959; Electron microscopical studies of phage multiplication. IV. The establishment of the DNA pool of vegetative phage and the maturation of phage particles. Virology 8:478
    [Google Scholar]
  32. Kerridge D. 1959; Synthesis of flagella by amino acid-requiring mutants of Salmonella typhimurium . J. gen. Microbiol 21:168
    [Google Scholar]
  33. Kozloff L. M., Lute M. 1959; A contractile protein in the tail of bacteriophage T2. J. biol. Chem 234:539
    [Google Scholar]
  34. Labaw L. W., Mosley V. M. 1955; Periodic structure in the flagella of Brucella bronchiseptica . Biochim. biophys. Acta 17:322
    [Google Scholar]
  35. Lederberg J., Edwards P. R. 1953; Serotypic recombination in salmonella. J. Immunol 71:232
    [Google Scholar]
  36. Lederberg J., Iino T. 1956; Phase variation in salmonella. Genetics 41:743
    [Google Scholar]
  37. Leifson E. 1951; Staining, shape and arrangement of bacterial flagella. J. Bact 62:377
    [Google Scholar]
  38. Leifson E., Hugh R. 1953; Variation in shape and arrangement of bacterial flagella. J. Bact 65:263
    [Google Scholar]
  39. Leifson E., Carhart S. R., Fulton M. 1955; Morphological characteristics of flagella of Proteus and related bacteria. J. Bact 69:73
    [Google Scholar]
  40. London S. A. 1958 A study of bacteriophage VIII-113 specific for flagellated salmonellae Ph.D. Thesis University of Delaware:
    [Google Scholar]
  41. Mercer E. H. 1959; An electron microscopic study of thin sections of bacteria and bacteriophage grown on agar plates. Biochim. biophys. Acta 34:84
    [Google Scholar]
  42. Murphy J. S. 1957; A phage-associated enzyme of Bacillus megaterium which destroys the bacterial cell wall. Virology 4:563
    [Google Scholar]
  43. Nicolle P., Rita G., Huet M. 1951; Demonstration, par l’épreuve des bactériophages Vi, d’une analogie physiologique entre les antigènes Vi présents chez des espèces bactériennes différentes. Ann. Inst. Pasteur 81:473
    [Google Scholar]
  44. Nicolle P., Jude A., Diverneau Gisèle. 1953; Antigènes entravant l’action de certains bactériophages. Ann. Inst. Pasteur 84:27
    [Google Scholar]
  45. Ogonuki H. 1940; Acid agglutination in salmonella group. Kitasato Arch 17:80
    [Google Scholar]
  46. Pijper A. 1938; Dark-ground studies of flagellar and somatic agglutination of B. typhosus . J. Path. Bact 47:1
    [Google Scholar]
  47. Quadling C., Stocker B. A. D. 1957; The occurrence of rare motile bacteria in some non-motile salmonella strains. J. gen. Microbiol 17:424
    [Google Scholar]
  48. Rakieten M. L., Bornstein S. 1941; Influence of certain bacteriophages on the H antigens of Salmonella poona and E. typhi . Proc. Soc. exp. Biol., N.Y 48:359
    [Google Scholar]
  49. Reichert K. 1909; Über die Sichtbarmachung der Geisseln und die Geisselbewegung der Bakterien. Z. Bakt Abt. I. Orig 51:14
    [Google Scholar]
  50. Robertis E. de, Peluffo C. A. 1951; Chemical stimulation and inhibition of bacterial motility studied with a new method. Proc. Soc. exp. Biol., N.Y 78:584
    [Google Scholar]
  51. Schiff F., Bornstein S. 1940; Haemolytic effect of typhoid cultures in combination with pure lines of bacteriophage. J. Immunol 39:361
    [Google Scholar]
  52. Scholtens R. Th. 1938; The importance of receptor analysis for the study of physicochemical properties of typhoid bacilli. J. Hyg., Camb 38:273
    [Google Scholar]
  53. Sertic V., Boulgakov N. A. 1936a; Sur la sensibilité des souches d’Eberthella typhi au bactériophage en relation avec les caractères antigèniques. C.R. Soc. Biol., Paris 122:35
    [Google Scholar]
  54. Sertic V., Boulgakov N. A. 1936b; Bactériophages spécifiques pour des variétés bactériennes flagellées. C.R. Soc. Biol., Paris 123:887
    [Google Scholar]
  55. Sertic V., Boulgakov N. A. 1936c; L’agglutination par la trypaflavine des Salmonella de structure antigénique flagellaire non-spécifique. C.R. Soc. Biol., Paris 123:951
    [Google Scholar]
  56. Starr M. P., Williams R. C. 1952; Helical fine structure of a motile diphtheroid. J. Bact 63:701
    [Google Scholar]
  57. Stocker B. A. D., Zinder N. D., Lederberg J. 1953; Transduction of flagellar characters in salmonella. J. gen. Microbiol 9:410
    [Google Scholar]
  58. Stocker B. A. D., Campbell J. C. 1959; The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration. J. gen. Microbiol 20:670
    [Google Scholar]
  59. Swanstrom M., Adams M. H. 1951; Agar layer method for production of high titre phage stocks. Proc. Soc. exp. Biol., N.Y 78:372
    [Google Scholar]
  60. Weibull C. 1950; Investigations on bacterial flagella. Acta chem. scand 4:268
    [Google Scholar]
  61. Weibull C. 1951; Movement of bacterial flagella. Nature; Lond: 167511
    [Google Scholar]
  62. Weibull C., Tiselius A. 1945; Note on the acid hydrolysis of bacterial flagellae. Ark. Kemi Min. Geol 20 B:3
    [Google Scholar]
  63. Weidel W., Primosigh J. 1958; Biochemical parallels between lysis by virulent phage and lysis by penicillin. J. gen. Microbiol 18:513
    [Google Scholar]
  64. Williams R. C., Fraser D. 1956; Structural and functional differentiation in T2 bacteriophage. Virology 2:289
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-25-2-253
Loading
/content/journal/micro/10.1099/00221287-25-2-253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error