1887

Abstract

SUMMARY: var. requires for growth a number of preformed lipid precursors. Media containing glycerol, cholesterol, a saturated and an unsaturated fatty acid, defatted bovine serum albumin and an additional defatted serum protein fraction (Fraction C) can supply these requirements. Albumin is believed to function by binding fatty acids, and Fraction C by binding cholesterol. The requirement for a saturated fatty acid can be satisfied by myristic, palmitic, stearic or margaric acid, lauric acid being less effective. The requirement for an unsaturated fatty acid can be satisfied by oleic acid, linoleic and linolenic acids being less effective. Organisms incubated in a medium deficient in either glycerol, the Fraction C + cholesterol system, or oleate, but adequate with respect to all other nutrients, died rapidly. Death was accompanied by lysis. Death due to a deficiency of glycerol or of cholesterol was prevented either by the omission of uracil (an essential nutrient) or by addition of chloramphenicol. Death due to oleate deficiency was not prevented by the omission of uracil. Morphological changes which resulted from each of these deficiencies are illustrated by electron micrographs. The hypothesis is advanced that glycerol, cholesterol and long-chain fatty acids are all needed for the synthesis of an undetermined cell component which is necessary for the structural integrity of the cell, and that the synthesis of this is more sensitive to a deficiency of these nutrients than is the synthesis of cytoplasm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-25-2-201
1961-06-01
2022-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/25/2/mic-25-2-201.html?itemId=/content/journal/micro/10.1099/00221287-25-2-201&mimeType=html&fmt=ahah

References

  1. Armstrong J. J., Baddiley J., Buchanan J. G. 1959; Teichoic acids from bacterial walls. Nature; Lond: 184247
    [Google Scholar]
  2. Brown J. B., Shinowara G. Y. 1937; Studies on the chemistry of fatty acids. II. The preparation of pure oleic acid by a simplified method. J. Amer. chem. Soc 59:6
    [Google Scholar]
  3. Butler M., Knight B. C. J. G. 1960; Steroid growth-requirements and steroid growth-inhibition of Mycoplasma. J. gen. Microbiol 22:483
    [Google Scholar]
  4. Buttery S. H., Plackett P. 1960; A specific polysaccharide from Mycoplasma mycoides . J. gen. Microbiol 23:357
    [Google Scholar]
  5. Dauchy S., Kayser F., Villoutreix J. 1956; Présence des corps donnant les réactions des stérols chez Escherichia coli . C.R. Soc. Biol., Paris 150:1974
    [Google Scholar]
  6. Davis B. D. 1947; The preparation and stability of fatty acid-free polyethylene sorbitan monooleate (Tween 80). Arch. Biochem. Biophys 15:359
    [Google Scholar]
  7. Davis B. D., Dubos R. J. 1946; Interaction of serum albumin, free and esterified oleic acid and lipase in relation to the cultivation of the tubercle bacillus. Arch. Biochem. Biophys 11:201
    [Google Scholar]
  8. Fiertel A., Klein H. P. 1959; On sterols in bacteria. J. Bact 78:738
    [Google Scholar]
  9. Gilby A. R., Few A. Y., McQuillen K. 1958; The chemical composition of the protoplast membrane of Micrococcus lysodeikticus . Biochim. biophys. acta 29:21
    [Google Scholar]
  10. Goodman D. S. 1957; Preparation of human serum albumin free of long-chain fatty acids. Science 125:1296
    [Google Scholar]
  11. Kandler O., Zehender C. 1957; Über das Vorkommen von Diaminopimelinsäure bei verschiedenen L-Phasen-typen von Proteus vulgaris und bei den Pleuropneumonieähnlichen Organismen. Z. Naturf 126:725
    [Google Scholar]
  12. Lynn R. J., Smith P. F. 1960; Chemical composition of pleuropneumonia like organisms. Ann. N. Y. Acad. Sci 79:493
    [Google Scholar]
  13. McCarty M. 1959; The occurrence of polyglycerophosphate as an antigenic component of various Gram-positive bacterial species. J. exp. Med 109:361
    [Google Scholar]
  14. Miles A. A., Misra S. S. 1938; The estimation of the bactericidal power of the blood. J. Hyg., Camb 38:732
    [Google Scholar]
  15. Mitchell P., Moyle J. 1956; Osmotic function and structure in bacteria. Symp. Soc. gen. Microbiol 6:172
    [Google Scholar]
  16. Nowotny A., Lüderitz O., Westphal O. 1958; Rundfilter-Chromatographie langkettiger Fettsäuren bei der Analyse bakterieller Lipopolysaccharide. Biochem. Z 330:47
    [Google Scholar]
  17. Plackett P. 1959; On the probable absence of mucocomplex from Mycoplasma mycoides . Biochim. biophys. acta 35:260
    [Google Scholar]
  18. Plackett P. 1961; A polyglycerophosphate compound from Mycoplasma mycoides . Nature; Lond: 189125
    [Google Scholar]
  19. Plackett P., Buttery S. H. 1958; A galactan from Mycoplasma mycoides . Nature; Lond: 1821236
    [Google Scholar]
  20. Razin S., Knight B. C. J. G. 1960; A partially defined medium for the growth of Mycoplasma. J. gen. Microbiol 22:492
    [Google Scholar]
  21. Roberts E. C., Snell E. E. 1946; An improved medium for microbiological assays with Lactobacillus casei . J. biol. Chem 163:499
    [Google Scholar]
  22. Rodwell A. W. 1956; The role of serum in the nutrition of Asterococcus mycoides . Aust. J. biol. Sci 9:105
    [Google Scholar]
  23. Rodwell A. W. 1960; Nutrition and metabolism of Mycoplasma mycoides var. mycoides . Ann. N.Y. Acad. Sci 79:499
    [Google Scholar]
  24. Rodwell A. W., Rodwell E. S. 1954; The breakdown of carbohydrates by Asterococcus mycoides, the organism of bovine pleuropneumonia. Aust. J. biol. Sci 7:18
    [Google Scholar]
  25. Shorb M. S., Lund P. G. 1959; Requirement of trichomonads for unidentified growrth factors, saturated and unsaturated fatty acids. J. Protozool 6:122
    [Google Scholar]
  26. Smith P. F. 1959; Cholesterol esterase activity of pleuropneumonia-like organisms. J. Bact 77:682
    [Google Scholar]
  27. Smith P. F. 1960; Nutritional requirements of PPLO and their relation to metabolism. Ann. N.Y. Acad. Sci 79:508
    [Google Scholar]
  28. Turner A. W., Campbell A. D., Dick A. T. 1935; Recent work on pleuropneumonia Contagiosa boum in North Queensland. Aust. vet. J 11:63
    [Google Scholar]
  29. Waring W. S., Werkman C. H. 1942; Growth of bacteria in an iron-free medium. Arch. Biochem. Biophys 1:303
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-25-2-201
Loading
/content/journal/micro/10.1099/00221287-25-2-201
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error