1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-25-2-167
1961-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/25/2/mic-25-2-167.html?itemId=/content/journal/micro/10.1099/00221287-25-2-167&mimeType=html&fmt=ahah

References

  1. Antia M., Hoare D. S., Work E. 1957; The stereoisomers of α, ɛ-diaminopimelic aeid. 3. Properties and distribution of diaminopimelic acid racemase, an enzyme causing interconversion of the ll and meso isomers. Biochem. J 65:448
    [Google Scholar]
  2. Antia M., Work E. 1961; Oxidation of meso-diaminopimelic acid by certain atypical sporulating species of bacteria. J. gen. Microbiol 26: in Press
    [Google Scholar]
  3. Armstrong J. J., Baddiley J., Buchanan J. G., Carss B., Greenberg G. R. 1958; Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. J. chem. Soc4344
    [Google Scholar]
  4. Bauman N., Davis B. D. 1957; Selection of auxotrophic bacterial mutants through diaminopimelic acid or thymine deprival. Science 126:170
    [Google Scholar]
  5. Borek E., Ryan A. 1959; Induction of phage formation in protoplasts derived from a lysogenic organism. Biochim. biophys. Acta 36:386
    [Google Scholar]
  6. Brenner S. et al. 1958; Bacterial protoplasts. Nature; Lond: 1811713
    [Google Scholar]
  7. Brown D. D., Kozloff L. M. 1957; Morphological localization of the bacteriophage tail enzyme. J. biol. Chem 225:1
    [Google Scholar]
  8. Brumfitt W. 1959; The mechanism of development of resistance to lysozyme by some gram-positive bacteria. Brit. J. exp. Path 40:441
    [Google Scholar]
  9. Butler J. A. V., Crathorn A. R., Hunter G. D. 1958; The site of protein synthesis in Bacillus megaterium . Biochem. J 69:544
    [Google Scholar]
  10. Ciak J., Hahn F. E. 1959; Studies on the modes of action of cycloserine and its l-stereoisomer. Antibiot. & Chemother 9:47
    [Google Scholar]
  11. Cummins C. S. 1956; The chemical composition of the bacterial cell wall. Int. Rev. Cytol 5:25
    [Google Scholar]
  12. Cummins C. S., Harris H. 1956a; The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J. gen. Microbiol 14:583
    [Google Scholar]
  13. Cummins C. S., Harris H. 1956b; The relationship between certain members of the staphylococcus-micrococcus group as shown by their cell wall composition. Int. Bull, bact. Nomen.& Teuton 6:111
    [Google Scholar]
  14. Cummins C. S., Harris H. 1958; Studies on the cell-wall composition and taxonomy of Actinomycetales and related groups. J. gen. Microbiol 18:173
    [Google Scholar]
  15. Davis B. D. 1952; Biosynthetic interrelations of lysine, diaminopimelic acid, and threonine in mutants of Escherichia coli . Nature; Lond: 169534
    [Google Scholar]
  16. Dewey D. L., Work E. 1952; Diaminopimelic acid decarboxylase. Nature; Lond: 169533
    [Google Scholar]
  17. Dewey D. L., Hoare D. S., Work E. 1954; Diaminopimelic acid decarboxylase in cells and extracts of Escherichia coli and Aerobacter aerogenes . Biochem. J 58:523
    [Google Scholar]
  18. Douglas H. W., Parker F. 1958; Electrophoretic studies on bacteria. 3. The growth cycle of Bacillus megaterium, the behaviour of cells and the changes produced by lysozyme. Biochem. J 68:99
    [Google Scholar]
  19. Fleming A. 1922; On a remarkable bacteriolytic element found in tissues and secretions. Proc. Roy. Soc. B 93:306
    [Google Scholar]
  20. Fisher K. W. 1959; Bacteriophage penetration and its relation to host cell wall structure. Proc. Roy. phys. Soc., Edinb 28:91
    [Google Scholar]
  21. Freimer E. H., Krause R. M., McCarty M. 1959; Studies of l forms and protoplasts of group A streptococci. 1. Isolation, growth, and bacteriologic characteristics. J. exp. Med 110:853
    [Google Scholar]
  22. Gerhardt P. 1959; The protoplast membrane of bacteria. Univ. Mich. med. Bull 25:148
    [Google Scholar]
  23. Ghuysen J. M., Salton M. R. J. 1960; Acetylhexosamine compounds enzymically released from Micrococcus lysodeikticus cell walls. I. Isolation and composition of acetylhexosamine and acetylhexosaminepeptide complexes. Biochim. biophys. Acta 40:462
    [Google Scholar]
  24. Gilby A. R., Few A. V., McQuillen K. 1958; The chemical composition of the protoplast membrane of Micrococcus lysodeikticus . Biochim. biophys. Acta 29:21
    [Google Scholar]
  25. Gilvarg C. 1957; N-succinyl-l-diaminopimelic acid, an intermediate in the biosynthesis of diaminopimelic acid. Biochim. biophys. Acta 24:216
    [Google Scholar]
  26. Gilvarg C. 1958; The enzymatic synthesis of diaminopimelic acid. J. biol. Chem 233:1501
    [Google Scholar]
  27. Gilvarg C. 1959; N-succinyl-l-diaminopimelic acid. J. biol. Chem 234:2955
    [Google Scholar]
  28. Glaser L. 1960; Glutamic acid racemase from Lactobacillus arabinosus . J. biol. Chem 235:2095
    [Google Scholar]
  29. Hahn F. E., Ciak J. 1957; Penicillin-induced lysis of Escherichia coli . Science 125:119
    [Google Scholar]
  30. Hancock R., Park J. T. 1958; Cell wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature; Lond: 1811050
    [Google Scholar]
  31. Hoare D. S., Work E. 1955; The stereoisomers of α, ɛ-diaminopimelic acid: their distribution in nature and behaviour towards certain enzyme preparations. Biochem. J 61:562
    [Google Scholar]
  32. Hoare D. S., Work E. 1957; The stereoisomers of α, ɛ-diaminopimelic acid. 2. Their distribution in the bacterial order Actinomycetales and in certain Eubacteriales. Biochem. J 65:441
    [Google Scholar]
  33. Holdsworth E. S. 1951; A polysaccharide isolated from Corynebacterium diphtheriae . Biochem. J 49:xiv
    [Google Scholar]
  34. Holme T., Malmborg A.-S., Cota-Robles E. 1960; Antigens of spheroplast membrane preparations from Escherichia coli B. Nature; Lond: 18557
    [Google Scholar]
  35. Ikawa M., Snell E. E. 1960; Cell wall composition of lactic acid bacteria. J. biol. Chem 235:1376
    [Google Scholar]
  36. Ingram V. M., Salton M. R. J. 1957; The action of fluorodinitrobenzene on bacterial cell walls. Biochim. biophys. Acta 24:9
    [Google Scholar]
  37. Ito E., Ishimoto N., Saito M. 1959; Uridine diphosphate N-acetylamino sugar compounds from Staphylococcus aureus strain 209P. 1. Amino acid constituents. Arch. Biochem. Biophys 80:431
    [Google Scholar]
  38. Jacob F., Fuerst C. R. 1958; The mechanism of lysis by phage studied with defective lysogenic bacteria. J. gen. Microbiol 18:518
    [Google Scholar]
  39. Handler O., Zehender C. 1957; Über das Vorkommen von α, ɛ-diaminopimelinsäure bei verschiedenen l-Phasentypen von Proteus vulgaris und bei den pleuropneumonie-ähnlichen Organismen. Z. Naturforsch 12b:725
    [Google Scholar]
  40. Kellenberger E., Ryter A. 1958; Cell wall and cytoplasmic membrane of Escherichia coli . J. biophys. biochem. Cytol 4:323
    [Google Scholar]
  41. Kindler S. H., Gilvarg C. 1960; N-succinyl-l-diaminopimelic acid deacylase. J. biol. Chem 235:3532
    [Google Scholar]
  42. Koch G., Dreyer W. J. 1958; Characterization of an enzyme of phage T2 as a lysozyme. Virology 6:291
    [Google Scholar]
  43. Koch G., Jordan E. M. 1957; Killing of E. coli B by phage-free T2 lysates. Biochim. biophys. Acta 25:437
    [Google Scholar]
  44. Koch G., Weidel W. 1956; Abspaltung chemischer Komponenten der Coli-Membran durch daran adsorbierte Phagen. 1. Mitt: Allgemeine Charakterisierungdes Effekts und Partialanalyse einer der abgespaltenen Komponenten. Z. Naturforsch 11b:345
    [Google Scholar]
  45. Krause R. M. 1958; Studies on the bacteriophages of haemolytic streptococci. II. Antigens released from the streptococcal cell wall by a phage-associated lysin. J. exp. Med 108:803
    [Google Scholar]
  46. Lederberg J. 1956; Bacterial protoplasts induced by penicillin. Proc. nat. Acad. Sci., Wash 42:574
    [Google Scholar]
  47. Lederberg J., St. Clair J. 1958; Protoplasts and l-type growth of Escherichia coli . J. Bact 75:143
    [Google Scholar]
  48. Liebermeister K., Kellenberger E. 1956; Studien zur l-Form der Bakterien. Z. Naturforsch 11b:200
    [Google Scholar]
  49. Mandelstam J., Rogers H. J. 1958; Chloramphenicol-resistant incorporation of amino-acids into Staphylococci and cell wall synthesis. Nature; Lond: 181956
    [Google Scholar]
  50. Mandelstam J., Rogers H. J. 1959; The incorporation of amino acids into the cell wall mucopeptide of Staphylococci and the effect of antibiotics on the process. Biochem. J 72:654
    [Google Scholar]
  51. Maxted W. R. 1957; The active agent in nascent phage lysis of Streptococci . J. gen. Microbiol 16:584
    [Google Scholar]
  52. McCarty M. 1952; The lysis of group A hemolytic streptococci by extracellular enzymes of Streptomyces albus. II. Nature of the cellular substrate attacked by the lytic enzymes. J. exp. Med 96:569
    [Google Scholar]
  53. McQuillen K. 1955; Bacterial protoplasts: growth and division of protoplasts of Bacillus megaterium . Biochim. biophys. Acta 18:458
    [Google Scholar]
  54. McQuillen K. 1958a; Lysis resulting from metabolic disturbance. J. gen. Microbiol 18:498
    [Google Scholar]
  55. McQuillen K. 1958b; Bacterial ‘protoplasts’: Effects of diaminopimelic acid deprival and penicillin addition compared in Escherichia coli . Biochim. biophys. Acta 27:410
    [Google Scholar]
  56. Meadow P. 1960; Effects of penicillin on a mutant of Escherichia coli requiring diaminopimelic acid. Biochem. J 76:8P
    [Google Scholar]
  57. Meadow P., Work E. 1958; Bacterial transamination of the stereoisomers of diaminopimelic acid and lysine. Biochim. biophys. Acta 28:596
    [Google Scholar]
  58. Meadow P., Work E. 1959; Biosynthesis of diaminopimelic acid and lysine in Escherichia coli. 2. Incorporation of (14C) diaminopimelic acid, lysine and glucose. Biochem. J 72:400
    [Google Scholar]
  59. Meadow P., Hoare D. S., Work E. 1957; Interrelationships between lysine and α, ɛ-diaminopimelic acid and their derivatives and analogues in mutants of Escherichia coli . Biochem. J 66:270
    [Google Scholar]
  60. Mitchell P., Moyle J. 1957; Autolytic release and osmotic properties of ‘protoplasts’ from Staphylococcus aureus . J. gen. Microbiol 16:184
    [Google Scholar]
  61. Murphy J. S. 1957; A phage-associated enzyme of Bacillus megaterium which destroys the bacterial cell wall. Virology 4:563
    [Google Scholar]
  62. Panijel J., Huppert J. 1957; Mise en évidence de prolysines endogènes dans les bactériophages. Ann. Inst. Pasteur 93:352
    [Google Scholar]
  63. Park J. T. 1952; Uridine-5′-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus: II. A structure common to three derivatives; III. Amino-acid containing derivatives. J. biol. Chem 194:877885–897
    [Google Scholar]
  64. Park J. T., Strominger J. L. 1957; Mode of action of penicillin.Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science 125:99
    [Google Scholar]
  65. Perkins H. R. 1960a; The structure of a disaccharide liberated by lysozyme from the cell walls of Micrococcus lysodeikticus . Biochem. J 74:182
    [Google Scholar]
  66. Perkins H. R. 1960b; Substances reacting as hexosamines and as N-acetyl hexosamine liberated from bacterial cell walls by lysozyme. Biochem. J 74:186
    [Google Scholar]
  67. Perkins H. R., Rogers H. J. 1959; The products of the partial acid hydrolysis of the mucopeptide from cells wall of Micrococcus lysodeikticus . Biochem. J 72:647
    [Google Scholar]
  68. Peterkofsky B., Gilvarg C. 1959; Purification and properties of N-succinyl-diamino-pimelic-glutamic transaminase. Fed. Proc 18:301
    [Google Scholar]
  69. Powell J. F., Strange R. E. 1953; Biochemical changes occurring during the germination of bacterial spores. Biochem. J 54:205
    [Google Scholar]
  70. Powell J. F., Strange R. E. 1956; Biochemical changes occurring during sporulation in Bacillus species. Biochem. J 63:661
    [Google Scholar]
  71. Prestidge L. S., Pardee A. B. 1957; Induction of bacterial lysis by penicillin. J. Bact 74:48
    [Google Scholar]
  72. Ralston D. J., Lieberman M., Baer B., Krueger A. P. 1957; Staphylococcal virolysin, a phage-induced lysin.Its differentiation from the autolysin of normal cells. J. gen. Physiol 40:791
    [Google Scholar]
  73. Richmond M. H. 1959a; Formation of a lytic enzyme by a strain of Bacillus subtilis . Biochim. biophys. Acta 33:78
    [Google Scholar]
  74. Richmond M. H. 1959b; Properties of a lytic enzyme produced by a strain of Bacillus subtilis . Biochim. biophys. Acta 33:92
    [Google Scholar]
  75. Richmond M. H., Perkins H. R. 1960; Possible precursors for the synthesis of muramic acid by Staphylococcus aureus 524. Biochem. J 76:1P
    [Google Scholar]
  76. Rhuland L. E. 1957; Role of α, ɛ-diaminopimelic acid in the cellular integrity of Escherichia coli . J. Bact 73:778
    [Google Scholar]
  77. Rhuland L. E. 1960; α,ɛ-diaminopimelic acid: its distribution, synthesis and metabolism. Nature; Lond: 185224
    [Google Scholar]
  78. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α, ɛ-diaminopimelic acid on paper chromatograms. J. Amer. chem. Soc 77:4844
    [Google Scholar]
  79. Rogers H. J., Perkins H. R. 1959; Cell-wall mucopeptides of Staphylococcus aureus and Micrococcus lysodeikticus . Nature; Lond: 184520
    [Google Scholar]
  80. Rydon H. N. 1948; d-Amino acids in microbiological chemistry. ‘The relation of optical form to biological activity in the amino acids series’. Biochem. Soc. Symp 1:40
    [Google Scholar]
  81. Salton M. R. J. 1952a; Studies of the bacterial cell wall. III. Preliminary investigation of the chemical constitution of the cell wall of Streptococcus faecalis . Biochim. biophys. Acta 8:510
    [Google Scholar]
  82. Salton M. R. J. 1952b; Cell wall of Micrococcus lysodeikticus as the substrate of lysozyme. Nature; Lond: 170746
    [Google Scholar]
  83. Salton M. R. J. 1956a; Bacterial cell walls. In Bacterial Anatomy, Symp. Soc. gen. Microbiol 6:81
    [Google Scholar]
  84. Salton M. R. J. 1956b; Studies of the bacterial cell wall. V. The action of lysozyme on cell walls of some lysozyme-sensitive bacteria. Biochim. biophys. Acta 22:495
    [Google Scholar]
  85. Salton M. R. J. 1957a; The properties of lysozyme and its action on microorganisms. Bact. Rev 21:82
    [Google Scholar]
  86. Salton M. R. J. 1957b; Cell-wall amino acids and amino-sugars. Nature; Lond: 180338
    [Google Scholar]
  87. Salton M. R. J. 1958; The lysis of micro-organisms by lysozyme and related enzymes. J. gen. Microbiol 18:481
    [Google Scholar]
  88. Salton M. R. J., Ghuysen J. M. 1959; The structure of di- and tetra-saccharides released from cell walls by lysozyme and Streptomyces F 1 enzyme and the β(1 → 4) N-acetylhexosaminidase activity of these enzymes. Biochim. biophys. Acta 36:552
    [Google Scholar]
  89. Salton M. R. J., Horne R. W. 1951; Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls. Biochim. biophys. Acta 7:177
    [Google Scholar]
  90. Salton M. R. J., Marshall B. 1959; The composition of the spore wall and the wall of vegetative cells of Bacillus subtilis . J. gen. Microbiol 21:415
    [Google Scholar]
  91. Salton M. R. J., Shafa F. 1958; Some changes in the surface structure of gramnegative bacteria induced by penicillin action. Nature; Lond: 1811321
    [Google Scholar]
  92. Shockman G. D. 1959a; Bacterial cell wall synthesis: The effect of threonine depletion. J. biol. Chem 234:2340
    [Google Scholar]
  93. Shockman G. D. 1959b; Reversal of cycloserine inhibition by d-alanine. Proc. Soc. exp. Biol., N.Y 101:693
    [Google Scholar]
  94. Shockman G. D., Kolb J. J., Toennies G. 1958; Relations between bacterial cell wall synthesis, growth phase, and autolysis. J. biol. Chem 230:961
    [Google Scholar]
  95. Strange R. E. 1956; The structure of an amino sugar present in certain spores and bacterial cell walls. Biochem. J 64:23P
    [Google Scholar]
  96. Strange R. E. 1959; Cell wall lysis and the release of peptides in Bacillus species. Bact. Rev 23:1
    [Google Scholar]
  97. Strange R. E., Dark F. A. 1956; The composition of the spore coats of Bacillus megaterium, B. subtilis and B. cereus . Biochem. J 62:459
    [Google Scholar]
  98. Strange R. E., Kent L. H. 1959; The isolation, characterization and chemical synthesis of muramic acid. Biochem. J 71:333
    [Google Scholar]
  99. Strange R. E., Powell J. F. 1954; Hexosamine-containing peptides in spores of Bacillus subtilis, B. megaterium and B. cereus . Biochem. J 58:80
    [Google Scholar]
  100. Strominger J. L. 1957; Microbial uridine-5′-pyrophosphate N-acetylamino sugar compounds. 1. Biology of the penicillin-induced accumulation. J. biol. Chem 224:509
    [Google Scholar]
  101. Strominger J. L. 1958; Enzymic transfer of pyruvate to uridine diphosphoacetyl-glucosamine. Biochim. biophys. Acta 30:645
    [Google Scholar]
  102. Strominger J. L. 1959a; The amino acid sequence in the uridine nucleotide-peptide from Staphylococcus aureus . C.R. Lab. Carlsberg 31:181
    [Google Scholar]
  103. Strominger J. L. 1959b; Accumulation of uridine and cytidine nucleotides in Staphylococcus aureus inhibited by gentian violet. J. biol. Chem 234:1520
    [Google Scholar]
  104. Strominger J. L. 1960; Mononucleotide anhydrides and related compounds as intermediates in metabolic reactions. Physiol. Rev 40:55
    [Google Scholar]
  105. Strominger J. L., Threnn R. H. 1959; The optical configuration of the alanine residues in a uridine nucleotide and in the cell wall of Staphylococcus aureus . Biochim. biophys. Acta 33:280
    [Google Scholar]
  106. Strominger J. L., Scott S. S., Threnn R. H. 1959; Isolation from E. coli of a uridine nucleotide containing diaminopimelic acid. Fed. Proc 18: abstract 1323
    [Google Scholar]
  107. Strominger J. L., Threnn R. H., Scott S. S. 1959; Oxamycin, a competitive antagonist of the incorporation of D-alanine into a uridine nucleotide in Staphylococcus aureus . J. Amer. chem. Soc 81:3803
    [Google Scholar]
  108. Thorne C. B. 1956; Capsule formation and glutamyl polypeptide synthesis by Bacillus anthracis and Bacillus subtilis. . In Bacterial Anatomy. Symp. Soc. gen. Microbiol 6:68
    [Google Scholar]
  109. Thorne C. B., Gomez C. G., Housewright R. D. 1955; Transamination of D-amino acids by Bacillus subtilis . J. Bact 69:357
    [Google Scholar]
  110. Toennies G., Gallant D. L. 1949; Bacterimetric studies: II. The role of lysine in bacterial maintenance. J. biol. Chem 177:831
    [Google Scholar]
  111. Toennies G., Shockman G. D. 1958; Growth chemistry of Streptococcus faecalis, in Colloquia . 4th int. Congr. Biochem 13:365
    [Google Scholar]
  112. Toennies G., Bakay B., Shockman G. D. 1959; Bacterial composition and growth phase. J. biol. Chem 234:3269
    [Google Scholar]
  113. Vennes J. W., Gerhardt P. 1959; Antigenic analysis of cell structures isolated from Bacillus megaterium . J. Bact 77:58
    [Google Scholar]
  114. Vincenzi L. 1887; Ueber die chemischen Bestandtheile der Spaltpilze. Hoppe-Seyl. Z 11:181
    [Google Scholar]
  115. Weibull C. 1958; Bacterial protoplasts. Annu. Rev. Microbiol 12:1
    [Google Scholar]
  116. Weibull C., Bergstrom L. 1958; The chemical nature of the cytoplasmic membrane and cell wall of Bacillus megaterium, Strain M. Biochim. biophys. Acta 30:340
    [Google Scholar]
  117. Weidel W. 1958; Bacterial viruses. Annu. Rev. Microbiol 12:27
    [Google Scholar]
  118. Weidel W., Primosigh J. 1957; Die gemeinsame Wurzel der Lyse von Escherichia coli durch Penicillin oder durch Phagen. Z. Naturforsch 126:421
    [Google Scholar]
  119. Weidel W., Primosigh J. 1958; Biochemical parallels between lysis by virulent phage and lysis by penicillin. J. gen. Microbiol 18:513
    [Google Scholar]
  120. Weidel W., Frank H., Martin H. H. 1960; The rigid layer of the cell wall of Escherichia coli Strain B. J. gen. Microbiol 22:158
    [Google Scholar]
  121. Westphal O. 1960; Récentes recherches sur la chimie et la biologie des endotoxines des bactéries a Gram négatif. Ann. Inst. Pasteur 98:789
    [Google Scholar]
  122. Work E. 1951; The isolation of α, ɛ-diaminopimelic acid from Corynebacterium diphtherias and Mycobacterium tuberculosis . Biochem. J 49:17
    [Google Scholar]
  123. Work E. 1955; The action of l-amino acid oxidases on the optical isomers of α, ɛ-diaminopimelic acid. Biochim. biophys. Acta 17:410
    [Google Scholar]
  124. Work E. 1957; Biochemistry of the bacterial cell wall. Nature; Lond: 179841
    [Google Scholar]
  125. Work E. 1959; The action of a lytic enzyme from spores of a Bacillus sp. on various species of bacteria. Ann. Inst. Pasteur 96:468
    [Google Scholar]
  126. Work E. 1960; Properties of λ-endolysin, the lytic enzyme in lysates of lysogenic Escherichia coli . Biochem. J 76:38P
    [Google Scholar]
  127. Work E., Dewey D. L. 1953; The distribution of α, ɛ-diaminopimelic acid among various micro-organisms. J. gen. Microbiol 9:394
    [Google Scholar]
  128. Work E., Lecadet M. 1960; Digestion of cell walls of Escherichia coli and Bacillus megaterium by λ-endolysin or lysozyme. Biochem. J 76:39P
    [Google Scholar]
  129. Work E., Birnbaum S. M., Winitz M., Greenstein J. P. 1955; Separation of the three isomeric components of synthetic α, ɛ-diaminopimelic acid. J. Amer. chem. Soc 77:1916
    [Google Scholar]
  130. Zilliken F. 1959; Chemistry of bacterial cell walls. Fed. Proc 18:966
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-25-2-167
Loading
/content/journal/micro/10.1099/00221287-25-2-167
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error