1887

Abstract

SUMMARY: Metabolic products of fermentable carbohydrates, as well as certain fatty acids, ethanol and acetaldehyde can serve as sources for serine synthesis in Tetrahymena. Exogenous hydroxypyruvate and related compounds were inactive.

Sparing experiments indicate that serine contributes to the formation of glycine, cysteine (presumably via cystathionine), aminoethanol and thymine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-22-1-79
1960-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/22/1/mic-22-1-79.html?itemId=/content/journal/micro/10.1099/00221287-22-1-79&mimeType=html&fmt=ahah

References

  1. Arnstein H.R.V. 1954; The metabolism of glycine. Advanc. Protein Chem 9:1
    [Google Scholar]
  2. Arnstein H.R.V. 1955; Biosynthesis of glycine and serine in normal and folic-acid deficient rats. Biochem. J 60:vii
    [Google Scholar]
  3. Barron E.S.G., Ghiretti F. 1953; The pathways of acetate oxidation. Biochim. biophys. Acta 12:239
    [Google Scholar]
  4. Black A.L., Kleiber M. 1955; Propionate metabolism in intact dairy cow. Fed. Proc 14:184
    [Google Scholar]
  5. Black A.L., Kleiber M. 1958; The transfer of carbon from propionate to amino acids in intact cows. J. biol. Chem 232:203
    [Google Scholar]
  6. Black A.L., Kleiber M., Baxter C.F. 1955; Glucose as a precursor of amino acids in the intact dairy cow. Biochim. Mophys. Acta 17:346
    [Google Scholar]
  7. Black A.L., Kleiber M., Smith A.H. 1952; Carbonate and fatty acids as precursors of amino adds in casein. J. biol. Chem 197:865
    [Google Scholar]
  8. Black A.L., Kleiber M., Smith A.H., Stewart D.N. 1957; Acetate as a precursor of casein in the intact dairy cow. Biochim. Mophys. Acta 23:54
    [Google Scholar]
  9. Biakley R.L. 1955; The interconversion of serine and glycine: participation of pyridoxal phosphate. Biochem. J 61:315
    [Google Scholar]
  10. Brady R.O., Koval G.J. 1958; The enzymatic synthesis of sphingosine. J. biol. Chem 233:26
    [Google Scholar]
  11. Dewey V.C., Kidder G.W. 1953; Factors affecting the requirement of Tetrahymena pyriformis (geleii) for folic acid. J. gen. microbiol 9:445
    [Google Scholar]
  12. Dewey V.C., Kidder G.W. 1958; Amino acid antagonisms in Tetrahymena. Arch. Biochem. Biophys 73:29
    [Google Scholar]
  13. Dewey V.C., Kidder G.W. 1960; The influence of folic acid, threonine and glycine on serine synthesis Tetrahymena. J. gen. microbiol 22:72
    [Google Scholar]
  14. Dickens F., Williamson D.H. 1958; The preparation and properties of lithium hydroxypyruvate and hydroxypyruvic add. Biochem. J 68:74
    [Google Scholar]
  15. Elliott A.M. 1949; The amino acid requirements of Tetrahymena geleii (E). Physiol. Zoöl 22:337
    [Google Scholar]
  16. Elliott A.M. 1950; The growth factor requirements of Tetrahymena geleii (E). Physiol. Zoöl 23:85
    [Google Scholar]
  17. Elliott A.M., Hogg J.F. 1952; Culture variations in Tetrahymena. Physiol. Zoöl 25:318
    [Google Scholar]
  18. Elwyn D., Sprinson D.B. 1954; The synthesis OF thymine and purines from serine and glydne in the rat. J. biol. Chem 207:467
    [Google Scholar]
  19. Flavin M. 1955; Biosynthesis of methylmalonate and its isomerization to succinate. Fed. Proc 14:306
    [Google Scholar]
  20. Flavin M., Castro-Mendoza H., Beck W.S. 1956; Enzymatic conversion of propionate to succinate. Fed. Proc 15:252
    [Google Scholar]
  21. Foster J.W., Carson S.F., Anthony D.S., Davis J.B., Jefferson W.E. 1949; Aerobic formation of fumaric acid in the mold Rhizopus nigricans-, synthesis by direct C2 condensation. Proc. not. Acad. Sci., Wash 35:663
    [Google Scholar]
  22. Genghof D.S. 1949; The sulfur amino acid requirement of Tetrahymena geleii. . Arch. Biochem 23:85
    [Google Scholar]
  23. Genghof D.S. 1951; The specificity of the sulfur amino acid requirement of Tetrahymena geleii. . Arch. Biochem. Biophys 34:112
    [Google Scholar]
  24. Heinrich M.R., Dewey V.C., Kidder G.W. 1957; The origin of thymine and cytosine in Tetrahymena. Biochim. Mophys. Acta 25:199
    [Google Scholar]
  25. Ichihaka A., Greenberg D.M. 1955; Pathways of serine formation from carbohydrate in rat liver. Proc. not. Acad. Set., Wash 41:005
    [Google Scholar]
  26. Ichihara A., Greenberg D.M. 1957; Further studies on the pathway of serine formation from carbohydrate. J. biol. Chem 224:331
    [Google Scholar]
  27. Katz J., Chaikoff I.L. 1955; The metabolism of propionate by rat liver slices and the formation of isosuccinic acid. J. Amer. chem. Soc 77:2659
    [Google Scholar]
  28. Kidder G.W., Dewey V.C. 1951; The biochemistry of ciliates in pure culture. . In Biochemistry and Physiology of Protozoa Lwoff A. Ed. i New York: Academic Press, Inc.;
    [Google Scholar]
  29. Kit S. 1955; The biosynthesis of free glycine and serine by tumours. Cancer Res 15:715
    [Google Scholar]
  30. Kline L., Pine L., Gunsalus I.C., Barker H.A. 1952; Probable identity of the growth-promoting factor for Butyribacterium rettgeri with other biologically active substances. J. Bact 64:467
    [Google Scholar]
  31. Kobnberg H.L., Beevers H. 1957; The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biockim. biophys.Acta 26:531
    [Google Scholar]
  32. Kun E., Davis D.D. 1956; Enzymatic components of the tartrate oxidizing system of beef heart mitochondria. Fed. Proc 15:294
    [Google Scholar]
  33. Kun E., Hernandez M.G. 1955; Enzymatic oxidation of tartaric acid. Fed. Proc 14:240
    [Google Scholar]
  34. Landau B.R., Ashmore J., Zottu S., Hastings A.B. 1959; CO2 fixation and pyruvate and propionate metabolism in rat liver. Fed. Proc 18:269
    [Google Scholar]
  35. Lardy H.A., Adler J. 1956; Synthesis of succinate from propionate and bicarbonate by soluble enzymes from liver mitochondria. J. biol. Chem 219:933
    [Google Scholar]
  36. Leaver F.W., Stjernholm R. 1956; Relationship of propionate and succinate in Propionibacterium. Fed. Proc 15:297
    [Google Scholar]
  37. Levine M., Tarver H. 1950; On the synthesis and some applications of serine- βC14 . J. biol. Chem 184:427
    [Google Scholar]
  38. Nyc J.F., Zabin I. 1955; The formation of serine from pyruvate. J. biol. Chem 215:35
    [Google Scholar]
  39. Radin N.S., Metzler D.E. 1955; Sodium glyoxylate monohydrate. Biochem. Prep 4:60
    [Google Scholar]
  40. Sallach H.J. 1955; Evidence for a specific alanine-hydroxypyruvate transaminase. In Ammo Acid Metabolism McElroy W.D., Glass H.B. Ed. by Baltimore: Johns Hopkins Press;
    [Google Scholar]
  41. Sallach H.J. 1956; Formation of hydroxyaspartic acid from dihydroxyfumaric acid and glutamic acid. Fed. Proc 15:344
    [Google Scholar]
  42. Sallach H.J. 1956; The formation of hydroxyaspartic acid from dihydroxyfumaric acid and glutamic acid. J. biol. Chem 223:629
    [Google Scholar]
  43. Sky-Peck H.H., Pearson H.E., Visser D.W. 1956; Incorporation of glucose-U-C14, glucose-1-C14, and glucose-6-C14 in vitro into protein-bound amino acids of one day-old mouse brain. J. biol. Chem 223:1033
    [Google Scholar]
  44. Sprinson D.B., Chargaff E. 1946; A study of β-hydroxy-α-ketoacids. J. biol. Chem 164:417
    [Google Scholar]
  45. Vagelos P.R., Earl J.M., Stadtman E.R. 1959; Propionic acid metabolism. II. Enzymatic synthesis of lactyl pantetheine. J. biol. Chem 234:765
    [Google Scholar]
  46. Van Niel C.B., Rubin S., Carson S.F., Kamkn M.D., Foster J.W. 1942; Radioactive carbon as an indicator of carbon dioxide utilization. IX. The assimilation of carbon dioxide by protozoa. Proc. not. Acad. Sci., Wash 28:157
    [Google Scholar]
  47. Wolfe J.B. 1955; Propionate metabolism by rat liver. Fed. Proc 14:306
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-22-1-79
Loading
/content/journal/micro/10.1099/00221287-22-1-79
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error