1887

Abstract

Summary: The infrared absorption spectra of the aerobic spore-forming bacilli are variable. Evidence is presented to show that, for the nature of the spectrum is related to the morphology of the bacteria, both showing a cyclic variation with time. The time scale of the cycle is affected by the temperature at which the cultures are incubated, by their population density and by the medium on which they are grown; it may be affected by induced drug resistance. Some of the characteristics of the spectrum of vacuolated vegetative organisms are due to the presence of an extractable substance which may be a polymer of -hydroxybutyric acid. Difference spectroscopy is used to demonstrate the presence of this substance, its disappearance as the bacteria autolyse and the appearance of -hydroxybutyric acid in the autolysed material. This technique is applied also to establish the state of dipicolinic acid in the resting spores of Any application of infrared spectroscopy to the study of aerobic spore-forming bacilli must take account of the morphological state of the bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-3-566
1958-12-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/3/mic-19-3-566.html?itemId=/content/journal/micro/10.1099/00221287-19-3-566&mimeType=html&fmt=ahah

References

  1. Bartlet J.C. 1957; Identification of edible oils and the detection of oil adulteration by differential infrared spectroscopy. Nature; Lond.: 1801071
    [Google Scholar]
  2. Bayne-jones S., Petrilli A. 1933; Cytological changes during the formation of the endospore in Bacillus megaterium. J. Bact 25:261
    [Google Scholar]
  3. Bellamy L.J. 1953; Analysis with double-beam infra-red spectrometers. . J. appl. Chem. 3:421
    [Google Scholar]
  4. Blackwood A.C., Epp A. 1957; Identification of β-hydroxybutyric acid in bacterial cells by infrared spectrophotometry. . J.Bact 74:266
    [Google Scholar]
  5. Burdon K.L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bact 52:665
    [Google Scholar]
  6. Burdon K.L., Stokes J.C., Kimbrough C.E. 1942; Studies of the common aerobic spore-forming bacilli. I. Staining for fat with sudan black B-safranin. J. Bact 43:717
    [Google Scholar]
  7. Ford M.A., Wilkinson G.R. 1954; The preparation and properties of pressed alkali halide disks with special reference to their use in spectroscopy. . J. sci. Instrum 31:338
    [Google Scholar]
  8. Greenstreet J.E.S., Norris K.P. 1957; The existence of differences between the infrared absorption spectra of bacteria. Spedrochim. Acta, 9:177
    [Google Scholar]
  9. Halvorson H.O. 1957; Rapid and simultaneous sporulation. . J. appl. Bact 20:305
    [Google Scholar]
  10. Hartman T.L. 1940; The use of Sudan black B as a bacterial fat stain. Stain Tech. 15:23
    [Google Scholar]
  11. Haynes W.C., Melvin E.H., Locke J.M., Glass C.A., Senti F.R. 1958; Certain factors affecting the infrared spectra of selected microorganisms. Appl. Microbiol. 6:298
    [Google Scholar]
  12. Hewitt L.F. 1951; Effect of cultural conditions on bacterial cytology. J. gen. Microbiol 5:293
    [Google Scholar]
  13. Hills G.M., Belton F.C., Blatchley E.D. 1949; Ayfivin: Production in chemically defined media and comparison with licheniformin. Brit. J. exp. Path 30:427
    [Google Scholar]
  14. Imšenecki A. 1945; On the structure of anaerobic bacteria. J. Bact 49:1
    [Google Scholar]
  15. Kenner B.A., Riddle J.W., Rockwood S.W., Bordner R.H. 1958; Bacterial identification by infrared spectrophotometry. II. Effect of instrumental and environmental variables. J. Bact 75:16
    [Google Scholar]
  16. Knaysi G. 1946; On the existence, morphology, nature and function of the cytoplasmic membrane in the bacterial cell. J. Bact 51:113
    [Google Scholar]
  17. Kull F.C., Grimm M.R. 1956; Differentiation of resistant mutants by infrared analysis. J. Bact 71:342
    [Google Scholar]
  18. Lemoigne M. 1923; Production d’acide β-oxybutyrique par certaines bacteries du group du B. subtilis. . C.R. Acad. Sci. Paris 176:1761
    [Google Scholar]
  19. Lemoigne M. 1926; Produits de deshydration et de polymerisation de l’acide β-oxybutyrique. Bull. Soc. Chim. Mol.Paris 8:770
    [Google Scholar]
  20. Lemoigne M. 1946; Fermentation β-hiydroxybutyrique (Formation d’acide β-hydroxybutyrique par autolyse). Helv. chim.acta 29:1303
    [Google Scholar]
  21. Lemoigne M., Delaporte B., Croson M. 1944; Contribution a 1’étude botanique et biochemique des bactéries du genre Bacillus. Valeur du test des lipides β-hydro-xybutyriques pour la characterisation des especes. . Ann. Inst.Pasteur 70:224
    [Google Scholar]
  22. Levine S., Stevenson H.J.R., Bordner R.H., Edwards P.R. 1955; Typing of Klebsiella by infrared spectrophotometry. J. infect. Dis. 96:193
    [Google Scholar]
  23. Lewis I.M. 1934; Cell inclusions and endospore formation in Bacillus mycoides. . J. Bact. 28:133
    [Google Scholar]
  24. Martin A.E. 1957; Difference and derivative spectra. Nature; Lond.: 180231
    [Google Scholar]
  25. Miles A.A., Misra S.S. 1938; The estimation of the bactericidal power of the blood. J. Hyg., Camb. 38:732
    [Google Scholar]
  26. Perry J.J., Foster J.W. 1956; Monoethyl ester of dipieolinic acid from bacterial spores. J. Bact. 72:295
    [Google Scholar]
  27. Powell E.O. 1956; An improved culture chamber for the study of living bacteria. . J. R. micr. Soc 75:235
    [Google Scholar]
  28. Powell J.F. 1950; Factors affecting the germination of thick suspensions of Bacillus subtilis spores in L-alanine solution. J. gen. Microbiol 4:330
    [Google Scholar]
  29. Powell J.F. 1953; Isolation of dipieolinic acid (Pyridine-2:6-dicarboxylic acid) from spores of Bacillus megaterium. Biochem. J. 54:210
    [Google Scholar]
  30. Powell J.F., Strange R.E. 1956; Biochemical changes occurring during sporulation in Bacillus species. Biochem. J 63:661
    [Google Scholar]
  31. Randall H.M., Smith D.W., Colm A.C., Nungester W.J. 1951; Reproducibility of extracts of M. tuberculosis as determined by infrared spectroscopy. Amer. Rev. Tuberc. 63:372
    [Google Scholar]
  32. Riddle J.W., Kabler P.W., Kenner B.A., Bordner R.H., Rockwood S.W., Stevenson H.J.R. 1956; Bacterial identification by infrared spectrophotometry. J. Bact 72:593
    [Google Scholar]
  33. Robinson D.Z. 1952; Quantitative analysis with infrared spectrophotometers. Differential analysis. Analyt. Chem 24:619
    [Google Scholar]
  34. Smith N.R., Gordon R.E., Clark F.E. 1952; Aerobic sporeforming bacteria. U.S. Dept, of Agriculture. Agriculture Monograph16
    [Google Scholar]
  35. Starkey R.L. 1946; Lipid production by a soil yeast. J. Bact. 51:33
    [Google Scholar]
  36. Stevenson H.J.R., Bolduan O.E.A. 1952; Infrared spectrophotometry as a means for identification of bacteria. Science 116:111
    [Google Scholar]
  37. Szybalski W., Bryson V. 1952; Genetic studies on microbial cross resistance to toxic agents. J. Bact 64:489
    [Google Scholar]
  38. Thomas L.C., Greenstreet J.E.S. 1954; The identification of micro-organisms by infrared spectrophotometry. Spectrochim. Acta 6:302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-3-566
Loading
/content/journal/micro/10.1099/00221287-19-3-566
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error