1887

Abstract

Summary: The influence of pH value on the antibacterial action of subtilin A has been demonstrated by survivor counts, inhibition of respiration, and pH gradient plates. is more sensitive to subtilin as the pH value increases; is more sensitive as the pH value decreases. The results are analogous to those obtained by other investigators working with cationic detergents, and are consistent with the hypothesis that the basic surface-active antibiotics kill bacteria by the same general mechanism as do the quaternary ammonium germicides. A survey of the growth inhibition of other organisms on pH gradient plates indicates that behaves like while and behave like

A pH/mobility curve for subtilin A, obtained by paper electrophoretic studies, indicates no striking changes in the charge of the molecule over the pH range 4–9, although the presence of at least one free -amino group is indicated by inflexion points in the range of pH 6–7. The isoelectric point of subtilin A at ionic strength 0·1 is approximately 6·7.

The use of sectored, square-shaped Petri dishes for pH-gradient plate studies with germicides is described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-3-542
1958-12-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/3/mic-19-3-542.html?itemId=/content/journal/micro/10.1099/00221287-19-3-542&mimeType=html&fmt=ahah

References

  1. Alderton G., Snell N. 1958; The isolation of subtilin A. J. Amer. chem. Soc in the Press
    [Google Scholar]
  2. Andersen A.A., Michener H.D. 1950; Preservation of foods with antibiotics. I. The complementary action of subtilin and mild heat. Food Tech 4:188
    [Google Scholar]
  3. Anderson H.H., Villela G.G., Hansen E.L., Reed R.K. 1946; Some physical and biological properties of subtilin and other antibiotics. Science 103:419
    [Google Scholar]
  4. Armstrong W.Mcd. 1957; Surface active agents and cellular metabolism. I. The effect of cationic detergents on the production of acid and of carbon dioxide by baker’s yeast. Arch. Biochem. Biophys 71:137
    [Google Scholar]
  5. Baker Z., Harrison R.W., Miller B.F. 1941a; Action of synthetic detergents on the metabolism of bacteria. J. exp. Med 73:249
    [Google Scholar]
  6. Baker Z., Harrison R.W., Miller B.F. 1941b; Inhibition by phospholipids of the action of synthetic detergents on bacteria. J. exp. Med 74:621
    [Google Scholar]
  7. Bichowsky-Slomnicki L., Berger A., Kurtz J., Katchalski E. 1956; The antibacterial action of some basic amino acid copolymers. Arch. Biochem. Biophys 65:400
    [Google Scholar]
  8. Carson J.F. 1952; The free amino groups of subtilin. J. Amer. Chem. Soc 74:1480
    [Google Scholar]
  9. Colasito D.J., Koffler H., Tetrault P.A., Reitz H.C. 1955; Release of cellular constituents as basis of sensitive assay for circulin. Canad. J. Microbiol 1:685
    [Google Scholar]
  10. Dawson I.M., Lominski I., Stern H. 1953; An electron-microscope study of the action of cetyl-trimethyl-ammonium bromide on Staphylococcus aureus. J.Path. Bact 66:513
    [Google Scholar]
  11. Dubos R.J., Hotchkiss R.D. 1942; Origin, nature and properties of gramicidin and tyrocidine. Trans. Coll. Physicns Philad 10: Series 4 11
    [Google Scholar]
  12. Fevold H.L., Dimick K.P., Klose A.A. 1948; Isolation of subtilin from submerged cultures. Arch. Biochem. Biophys 18:27
    [Google Scholar]
  13. Garibaldi J.A., Feeney R.E. 1949; Subtilin production. Industr. Engng Chem 41:432
    [Google Scholar]
  14. Gershenfeld L., Ibsen M. 1942; The inhibitory effect of lipoids on detergents with disinfectants acting against S. aureus and E. typhosa at different pH values. Amer. J. Pharm 114:281
    [Google Scholar]
  15. Gershenfeld L., Milanick V.E. 1941; Bactericidal and bacteriostatic properties of surface tension depressants. Amer. J. Pharm 113:306
    [Google Scholar]
  16. Gilby A.R., Few A.V. 1957; Reactivity of ionic detergents with Micrococcus lysodeikticus. Nature; Land.: 179422
    [Google Scholar]
  17. Godkin W.J., Cathcart W.H. 1953; The complimentary action on subtilin and terramycin in preserving custard fillings. Food Tech 7:282
    [Google Scholar]
  18. Housewright R.D., Henry R.J., Berkman S. 1948; A microbiological method for the assay of subtilin. J. Bact 55:545
    [Google Scholar]
  19. Krasnow I., Jann G.J., Salle A.J. 1953; The effect OF pH and heat on the activity of subtilin against spores of Clostridium botulinum. Bact. Proc 28:
    [Google Scholar]
  20. Kunkel H.G., Tiselius A. 1952; Electrophoresis of proteins on filter paper. J. gen. Physiol 35:89
    [Google Scholar]
  21. Lewis J.C., Humphreys E.M., Thompson P.A., Dimick K.P., Benedict R.G., Langlykke A.E., Lightbody H.D. 1947; The microbiological assay of subtilin. Arch. Biochem 14:437
    [Google Scholar]
  22. Lewis J.C., Snell N.S. 1951; The amino acid composition of subtilin. J. Amer. Chem. Soc 73:4812
    [Google Scholar]
  23. Michener H.D. 1955; The action of subtilin on heated bacterial spores. J. Bact 70:192
    [Google Scholar]
  24. Monty K.J., Morrison M., Alling E., Stotz E. 1956; Electrophoresis of cationic proteins on filter paper. J. biol. Chem 220:295
    [Google Scholar]
  25. Newton B.A. 1953; The release of soluble constituents from washed cells of Pseudomonas aeruginosa by the action of polymyxin. J. gen. Microbiol 9:54
    [Google Scholar]
  26. Newton B.A. 1954; Site of action of polymyxin on Pseudomonas aeruginosa: antagonism by cations. J. gen. Microbiol 10:491
    [Google Scholar]
  27. O’Brien R.T., Titus D.S., Devlin K.A., Stumbo C.R., Lewis J.C. 1956; Antibiotics in food preservation. II. Studies on the influence of subtilin and nisin on the thermal resistance of food spoilage bacteria. Food Tech 10:352
    [Google Scholar]
  28. Pan S.C., Dutcher J.D. 1956; Separation of acetylated neomycins B and C by paper chromatography. Analyt. Chem 28:836
    [Google Scholar]
  29. Pence J.W. 1953; Approximate isoelectric pH’s of albumins from wheat flour. Cereal Chem 30:328
    [Google Scholar]
  30. Quisno R., Foter M.J. 1946; Cetyl pyridinium chloride. I. Germicidal properties. J. Bact 52:111
    [Google Scholar]
  31. Sacks L.E. 1952a; Subtilin considered as a germicidal surface-active agent. Antibiot. & Chemother 2:79
    [Google Scholar]
  32. Sacks L.E. 1952b; The subtilin sensitivity of bacteria as a function of culture age. Antibiot. & Chemother 2:411
    [Google Scholar]
  33. Sacks L.E. 1956; A pH gradient agar plate. Nature; Lond.: 178269
    [Google Scholar]
  34. Sacks L.E., Pence J.W. 1957; Characterization and purification of subtilin by paper electrophoresis. Analyt. Chem 29:1802
    [Google Scholar]
  35. Salton M.R.J. 1950; The bactericidal properties of certain cationic detergents. Aust. J. Sci. Bes. (B) 3:45
    [Google Scholar]
  36. Soike K.I., Miller D.D., Elliker P.R. 1952; Effect of pH of solution on germicidal activity of quaternary ammonium compounds. J. Dairy Sci 35:764
    [Google Scholar]
  37. Stacey M. 1955; Chemistry of the Gram-staining process. Nature; Lond.: 1761145
    [Google Scholar]
  38. Velick S.F. 1949; The interaction of enzymes with small ions. I. An electrophoretic and equilibrium analysis of aldolase in phosphate and acetate buffer. J. Phys. Coll. Chem 53:135
    [Google Scholar]
  39. Wheaton E., Burroughs J.D., Hays G.L. 1957; Flat sour spoilage of tomato juice and its control with subtilin. Food Tech 11:286
    [Google Scholar]
  40. Zittle C.A., Custer J.H. 1957; Electrophoresis of β-lactoglobulin in the presence of CaCl2. Arch. Biochem. Biophys 71:229
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-3-542
Loading
/content/journal/micro/10.1099/00221287-19-3-542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error