1887

Abstract

SUMMARY: B10, a mutant strain of B, which exhibited a requirement for histidine + uracil under certain conditions of growth, became pyrimidine-independent when grown in a simple medium supplemented with these two substances. It was demonstrated that this change from uracil-dependence to non-dependence was not due to the selection of a competent back-mutant, but to the formation of the enzyme dihydro-orotic acid dehydrogenase, which is lacking in Uracil-requiring organisms. A study of the enzyme content of mutant and wild type at various stages of growth demonstrated that a high enzyme-forming capacity is associated with young organisms harvested from cultures in the late lag or early logarithmic period.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-2-365
1958-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/2/mic-19-2-365.html?itemId=/content/journal/micro/10.1099/00221287-19-2-365&mimeType=html&fmt=ahah

References

  1. Barnes E. H., Morris J. F. 1957; A quantitative study of the phosphase activity of Micrococcus pyogenes. J. Bact 73:100
    [Google Scholar]
  2. Cohn M., Monod J. 1953; Specific inhibition and induction of enzyme biosynthesis. Symp. Soc. gen. Microbiol 3:133
    [Google Scholar]
  3. Conway E. J. 1947 Microdiffusion Analysis and Volumetric Error chapter II London: Crosby Lockwood and Son, Ltd;
    [Google Scholar]
  4. Dolphin J. L., Frieden E. 1955; Biochemistry of amphibian metamorphosis. II. Arginase activity. J. Mol. Chem 217:735
    [Google Scholar]
  5. Gale E. F. 1938; Factors influencing bacterial deamination. III. Aspartase: its occurrence in and extraction from Bad. coli and its activation by adenosine and related compounds. Biochem. J 32:1583
    [Google Scholar]
  6. Gale E. F. 1943; Factors influencing the enzymic activities of bacteria. Bact. Rev 7:139
    [Google Scholar]
  7. Gale E. F. 1947 The Chemical Activities of Bacteria p. 17 London: University Tutorial Press Ltd;
    [Google Scholar]
  8. Gale E. F. 1955; From amino acids to proteins. In Symposium on Amino Add Metabolism p. 171 Mcelroy W. D., Glass B. Edited by Baltimore: Johns Hopkins Press;
    [Google Scholar]
  9. Gale E. F., Epps H. M. R. 1942; The effect of the pH of the medium during growth on the enzymic activities of bacteria (Bact. coli and Micrococcus lysoddkticus) and the biological significance of the changes produced. Biochem. J 36:600
    [Google Scholar]
  10. Giles N. H., Partridge C. W. H., Nelson N. J. 1957; The genetic control of adenylosuccinase in Neurospora crassa. Proc. nat. Acad. Sci., Wash 43:305
    [Google Scholar]
  11. Goebl W. F., Barry G. T., Shedlovsky T. 1956; Colicine K. I. The production of colicine K in media maintained at constant pH. J. exp. Med 103:577
    [Google Scholar]
  12. Greenstein J. P. 1947 Biochemistry of Cancer New York: Academic Press Inc;
    [Google Scholar]
  13. Hardwick W. A., Foster J. W. 1953; Enzymatic changes during sporogenesis in some aerobic bacteria. J. Bact 65:355
    [Google Scholar]
  14. Holmes R. 1955 The Mechanism of the Biosynthesis of Enzymes Ph.D. Thesis University of Toronto;
    [Google Scholar]
  15. Johnson M. J. 1941; Isolation and properties of a pure yeast polypeptidase. J. biol. Chem 137:575
    [Google Scholar]
  16. Jones M. E., Spector L., Lipmann F. 1955; Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. chem. Soc 77:819
    [Google Scholar]
  17. Koritz S. B., Cohen P. P. 1954; Colorimetric determination of carbamylamino acids and related compounds. J. biol. Chem 209:145
    [Google Scholar]
  18. Lederberg J. 1949; Bacterial variation. Annu. Rev. Microbiol 3:1
    [Google Scholar]
  19. Leuthardt F. 1950; Histidase and urocanase. In The Enzymes I pt. 2 p. 1156 Sumner J. B., Myrbäck K. Edited by New York: Academic Press Inc;
    [Google Scholar]
  20. Lieberman J., Kornberg A. 1953; Enzymic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydroorotic dehydrogenase. Biochim. biophys. Acta 12:223
    [Google Scholar]
  21. Lieberman J., Kornberg A. 1954; Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. II. Dihydroorotic acid, ureidosuccinic acid, and 5-carboxymethylhydantoin. J. biol. Chem 207:911
    [Google Scholar]
  22. Lowry O. H., Roseborough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin Phenol reagent. J. biol. Chem 193:265
    [Google Scholar]
  23. Monod J. 1942 Récherches sur la croissance des cultures bactériennes Paris: Hermann & Cie;
    [Google Scholar]
  24. Monod J. 1949; The growth of bacterial cultures. Annu. Rev. Microbiol 3:371
    [Google Scholar]
  25. Nason A., Kaplan N. O., Oldewurtel H. A. 1953; Further studies of nutritional conditions affecting enzymatic constitution in Neurospora. J. biol. Chem 201:435
    [Google Scholar]
  26. Needham J. 1942 Biochemistry and Morphogenesis Cambridge University Press:
    [Google Scholar]
  27. Pollock M. R. 1953; Stages in Enzyme Adaptation. Symp. Soc. gen. Microbiol 3:150
    [Google Scholar]
  28. Potter van R. 1950 Enzymes, Growth and Cancer Springfield: Chas. C. Thomas;
    [Google Scholar]
  29. Roberts R. B., Cowie D. B., Abelson P. H., Bolton E. T., Britten R. J. 1955; Studies of biosynthesis in Escherichia coli. Publ. Carneg. Instn607 Washington, D.C:
    [Google Scholar]
  30. Rogers H. J. 1954; The rate of formation of hyaluronidase, coagulase, and total extracellular protein by strains of Staphylococcus aureus. J. gen. Microbiol 10:209
    [Google Scholar]
  31. Rogers H. J. 1957; The preferential suppression of hyaluronidase formation in cultures of Staphylococcus aureus. J. gen. Microbiol 16:22
    [Google Scholar]
  32. Rogers H. J., Spensley P. C. 1955; Selective inhibition of the liberation of extracellular enzymes and protein in cultures of Staphylococcus aureus. Biochem. J 60:635
    [Google Scholar]
  33. Sheinin R. 1956 Some Investigations into the Mechanism of Enzyme Formation Ph.D. Thesis University of Toronto:
    [Google Scholar]
  34. Spiegelman S. 1950; Modem aspects of enzymatic adaptation. In The Enzymes i pt. 1 p. 267 Sumner J. B., Myrbäck K. Edited by New York: Academic Press Inc;
    [Google Scholar]
  35. Vogel H. J. 1956; Repression and induction as control mechanisms of enzyme biogenesis: the adaptive formation of acetylomithinase. A Symposium on the Chemical Basis of Heredity p. 276 Mcelroy W. D., Glass B. Edited by Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  36. Vogel H. J. 1957; Repressed and induced enzyme formation: a unified hypothesis. Proc. nat. Acad. Sci., Wash 43:491
    [Google Scholar]
  37. Yates R. A., Pardee A. B. 1956a; Pyrimidine biosynthesis in Escherichia coli. J. biol. Chem 221:743
    [Google Scholar]
  38. Yates R. A., Pardee A. B. 1956b; Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J. biol. Chem 221:757
    [Google Scholar]
  39. Yates R. A., Pardee A. B. 1957; Control by uracil of formation of enzymes required for orotate synthesis. J. biol. Chem 227:677
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-2-365
Loading
/content/journal/micro/10.1099/00221287-19-2-365
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error