1887

Abstract

SUMMARY: Freshly isolated and old stock strains of originating from the rumen will produce dextran at 37° in liquid sucrose-containing media. For good yields the presence of CO in some form is necessary. The CO may be provided as HCO3 at the start or during the life of the culture or by incubation in a CO atmosphere. The dextran has [α] +187° to +190° and is similar chemically to the leuco- nostoc dextran save that branching of the αl → 6 linked anhydro-glucose chain is rarer. With some strains practically no dextran is formed in H as gas-phase or in a closed system without HCO3 from which air is excluded. Other strains seem to have a limited power of producing dextran under these conditions, possibly because their action is not entirely homofermentative. Tween 80 will partially replace CO even with the first kind of strain. Highest yields of dextran, up to 80 % of the anhydro- glucose provided, are obtained when the life of the culture is prolonged by repeated neutralization and when additional sucrose is supplied. This is best achieved by the continuous neutralization obtained when solid CaCO is present in the culture. Dextran production is always accompanied by accumulation of fructose in the culture liquid together with a reducing fructose-containing disaccharide. Dextran can sometimes be produced in a simple liquid sucrose + proteose peptone medium with no phosphate buffering. Other things being equal, the presence of CO or HCO3 does not greatly increase the yield of bacterial protein in sucrose media.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-1-130
1958-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/1/mic-19-1-130.html?itemId=/content/journal/micro/10.1099/00221287-19-1-130&mimeType=html&fmt=ahah

References

  1. Bailey R. W., Barker S. A., Bourne E. J., Stacey M. 1955; Synthesis of oligosaccharides by growing cultures of Betaeoccus arabinosaceous. Nature; Lond: 175635
    [Google Scholar]
  2. Bailey R. W., Barker S. A., Bourne E. J., Stacey M. 1957; The isolation and properties of the dextransucrase of Betaeoccus arabinosaceous. J. chetn. Soc p. 3530
    [Google Scholar]
  3. Barker S. A., Bourne E. J., Bruce G. T., Neely W. G., Stacey M. 1954; The structure of a Betaeoccus arabinosaceous dextran. J. chem. Soc p. 2395
    [Google Scholar]
  4. Barker S. A., Bourne E. J., James A. E., Neely W. B., Stacey M. 1955; The structure of a modified Betaeoccus arabinosaceous dextran. J. chem. Soc p. 2096
    [Google Scholar]
  5. Bayly R. J., Bourne E. J. 1953; A new method for the paper chromatography of oligosaccharides. Nature; Lond: 171385
    [Google Scholar]
  6. Dain J. A., Neal A. L., Seeley H. W. 1956; The effect of carbon dioxide on polysaccharide production by Streptococcus boms. J. Bact 72:209
    [Google Scholar]
  7. Hehre E. J., Neill J. M. 1946; Formation of serologically active dextran by streptococci from subacute bacterial endocarditis. J. exp. Med 83:145
    [Google Scholar]
  8. Heyrovsky A. 1956; A new detection method for ketose sugars. Biochim. Biophys. Acta 21:180
    [Google Scholar]
  9. Hobson P. N., Macpherson M. J. 1954; Some serological and chemical studies on materials extracted from an amylolytic streptococcus from the rumen of the sheep. Biochem. J 57:145
    [Google Scholar]
  10. Hungate R. E. 1957; Micro-organisms in the rumen of cattle fed on a constant ration. Canad. J. Microbiol 3:289
    [Google Scholar]
  11. Hungate R. E., Fletcher D. W., Dougherty R. W., Barrentine B. F. 1955; Microbial activity in the bovine rumen: its measurement and relation to bloat. Appl. Microbiol 3:161
    [Google Scholar]
  12. Jeanes A. R., Wilham C. A. 1952; Periodate oxidation of dextrans. J. Amer. chem. Soc 74:5339
    [Google Scholar]
  13. Jermyn M. A., Isherwood F. A. 1949; Improved separation of the sugars on the paper partition chromatogram. Biochem. J 44:402
    [Google Scholar]
  14. Koepsell H. J., Tsuchiya H. M. 1952; Enzymatic synthesis of dextran. J. Bact 63:293
    [Google Scholar]
  15. Loomis W. F. 1957; Sexual differentiation in Hydra. Science 126:735
    [Google Scholar]
  16. Macpherson M. J. 1953; Isolation and identification of amylolytic streptococci from the rumen of the sheep. J. Path. Bact 66:95
    [Google Scholar]
  17. Mann S. O., Masson F. M., Oxford A. E. 1954; Facultative anaerobic bacteria from the sheep’s rumen. J. gen. Microbiol 10:142
    [Google Scholar]
  18. Mann S. O., Oxford A. E. 1955; Relationships between viable saccharolytic bacteria in rumen and abomasum of the young calf and kid. J. gen. Microbiol 12:140
    [Google Scholar]
  19. Niven C. F., Smiley K. L., Sherman J. M. 1941; The polysaccharide synthesized by Streptococcus salivarius and Streptococcus boms. J. biol. Chem 140:105
    [Google Scholar]
  20. Partridge S. M. 1948; Filter paper partition chromatography of sugars. Biochem. J 42:238
    [Google Scholar]
  21. Partridge S. M. 1949; Aniline hydrogen phthalate as a spraying reagent for chromatography of sugars. Nature; Lond: 166443
    [Google Scholar]
  22. Pirt S. J., Whelan W. J. 1951; The determination of starch by acid hydrolysis. J. Sci. Fd Agric 2:224
    [Google Scholar]
  23. Roe J. H. 1954; The determination of dextran in blood and urine with anthrone reagent. J. biol. Chem 208:889
    [Google Scholar]
  24. Salisbury G. W., Vandemark N. L. 1957; Sulfa compounds in reversible inhibition of sperm metabolism by carbon dioxide. Science 126:1118
    [Google Scholar]
  25. Sevag M. G., Lackman D. B., Smolens J. 1938; The isolation of the components of streptococcal nucleoproteins in serologically active form. J. Mol. Chem 124:425
    [Google Scholar]
  26. Shaffer P. A., Hartmann A. F. 1921; The iodometric determination of copper and its use in sugar analyses. J. Mol. Chem 45:365
    [Google Scholar]
  27. Smith P. A., Sherman J. M. 1942; The lactic acid fermentation of streptococci. J. Bact 43:725
    [Google Scholar]
  28. Stodola F. H., Koepsell H. J., Sharpe E. S. 1952; A new disaccharide produced by L. mesenteroides. J. Amer. chem. Soc 74:3202
    [Google Scholar]
  29. Topley & Wilson’s Principles of Bacteriology and Immunity 1946, 3rd ed. p. 600 Wilson G. S., Miles A. A. Edited by London: Edward Arnold and Co;
  30. Trevelyan W. E., Proctor D. P., Harrison J. S. 1950; Detection of sugars on paper chromatograms. Nature; Lond: 166444
    [Google Scholar]
  31. Turvey J. R., Whelan W. J. 1957; Preparation and characterization of the isomaltodextrins. Biochem. J 67:49
    [Google Scholar]
  32. Umbreit W. W., Burris R. H., Stauffer J. F. 1945 Manometric Techniques and Related Methods for the Study of Tissue Metabolism Minneapolis: Burgess Publishing Co;
    [Google Scholar]
  33. Whitehead H. R., Jones P. A., Robertson P. S. 1958; The influence of carbon dioxide on the growth of lactic streptococci. J. Dairy Res in Press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-1-130
Loading
/content/journal/micro/10.1099/00221287-19-1-130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error