1887

Abstract

SUMMARY: Silage made in the laboratory at 22°, 30° and 40° from five specimens of grass was examined after 1, 2, 3 and 8 days and 6 months- The dominant bacteria on fresh grass were obligate aerobes which died rapidly in a closed silo. Bacteria capable of anaerobic growth were represented irregularly and often weakly on grass. This can account for much of the variation in the composition of bacterial populations in silage. Organisms that developed extensively in much of the silage were the Klebsiella group, and Each proceeded to multiply soon after silos were closed; all stopped growing at about the same time. The rate of growth and the concentration of viable organisms reached were determined by properties of the herbage. Gram-negative organisms were restrained at 40°, and at 22°. The multiplication phase was short; it could be completed by the third day at all three temperatures. Cessation of growth could not be attributed to the accumulation of acids. Much acid was formed after all the main groups had reached the phase of decreasing viable count. When the lactic acid fermentation was not vigorous the decreases in pH value were most rapid at 40° and slowest at 22°.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-1-112
1958-08-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/1/mic-19-1-112.html?itemId=/content/journal/micro/10.1099/00221287-19-1-112&mimeType=html&fmt=ahah

References

  1. Allen L. A., Harrison J. 1936; A comparative study of lactobacilli from grass silage and other sources. Ann. appl. Biol 23:546
    [Google Scholar]
  2. Allen L. A., Harrison J. 1937; Anaerobic spore-formers in grass and grass silage. Ann. appl. Biol 24:148
    [Google Scholar]
  3. Allen L. A., Harrison J., Watson S. J., Ferguson W. S. 1937; A study of the chemical and bacteriological changes occurring in grass silage. J. agric. Sci 27:271
    [Google Scholar]
  4. Arnaudi C. 1940; New aspects, theoretical and practical, of forage ensilage. Mon. Bull, agric. Sci. Pract 31:371
    [Google Scholar]
  5. Barnett A. J. G. 1954 Silage Fermentation London: Butterworths Scientific Publications;
    [Google Scholar]
  6. Beynum J. van, Pette J. W. 1939; Die Stabilität der Gärungssilage. Zbl. Bakt Abt. 2 99:353
    [Google Scholar]
  7. Burri R. 1918; Über Versuche betreffend die bakteriologische und milchwirt-schaftliche Seite der Süssgrünfutterfrage. Schweiz. Milchztg 44:39 Abstr. in Zbl. Bakt. (Abt. 2), 49, 344
    [Google Scholar]
  8. Gerlach, Günther Seidel. 1926; Einsäuerungsversuche mit grünen Lupinen und grünen Serradella. Arb. dtsch. LandwGes 340:9
    [Google Scholar]
  9. Gneist K. 1937; Grünfuttersilierverfahren und Silofutteruntersuchungsmethoden. Landw. Versuchsw 128:257
    [Google Scholar]
  10. Harwood V. D. 1954; Analytical studies on the carbohydrates of grasses and clovers. VI. Changes in the cell-wall polysaccharides during the ensilage of perennial rye-grass with a high protein and low soluble-carbohydrate content. J. Sci. Fd Agric 5:276
    [Google Scholar]
  11. Hoskins J. K. 1934; Most probable numbers for evalulation of coli aerogenes tests by fermentation tube method. Publ. Hlth Rep., Wash 49:393
    [Google Scholar]
  12. Irvin H. M., Langston C. W., Gordon C. H. 1956; Development of organic acids in silage. J. Dairy Sci 39:940
    [Google Scholar]
  13. Jordan R. C., Jacobs S. E. 1947; The effect of temperature on the growth of Bacterium coli at pH 7·0 with a constant food supply. J. gen. Microbiol 1:121
    [Google Scholar]
  14. Keddie R. M. 1951; The enumeration of lactobacilli on grass and in silage. Proc. Soc. appl. Bact 14:157
    [Google Scholar]
  15. Kreula M. 1955; On the content of butyric acid and butyric acid bacteria in silage. Acta agral. fenn 83:238
    [Google Scholar]
  16. Kroulik J. T., Burkey L. A., Gordon C. H., Wiseman H. G., Melin C. G. 1955; Microbial activities in alfalfa and orchard grass ensiled under certain conditions in experimental silos. J. Dairy Sci 38:263
    [Google Scholar]
  17. Kroulik J. T., Burkey L. A., Wiseman H. G. 1955; The microbial populations of the green plant and of the cut forage prior to ensiling. J. Dairy Sci 38:256
    [Google Scholar]
  18. Longsworth L. G., Macinnes D. A. 1936; Bacterial growth at constant pH. Apparent oxidation-reduction potential, acid production, and population studies of Lactobacillus acidophilus under anaerobic conditions. J. Bact 32:567
    [Google Scholar]
  19. Mack E. 1936; Untersuchungen über Bacterium herbicola. Zbl. Bakt Abt. 2 95:218
    [Google Scholar]
  20. McClung L. S., McCoy E., Fred E. B. 1935; Studies on anaerobic bacteria. II. Further extensive uses of the vegetable tissue anaerobic system. Zbl. Bakt Abt. 2 91:225
    [Google Scholar]
  21. De Man J. C. 1957; The fermentation of cell wall substances in grass silage and in potato pulp. Leeuwenhoek ned. Tijdschr 23:87
    [Google Scholar]
  22. Nilsson G., Nilsson P. E. 1956; The microflora on the surface of some fodder plants at different stages of maturity. Arch. Mikrobiol 24:412
    [Google Scholar]
  23. Nilsson G., Nilsson P. E., Abrahamson A. 1956; Origin of spores of anaerobic microorganisms in milk. Arch. Mikrobiol 25:1
    [Google Scholar]
  24. Nilsson P. E. 1956; Silage studies III: Some characteristics of the silage microflora. Arch. Mikrobiol 24:396
    [Google Scholar]
  25. Nilsson R., Tóth L., Rydin G. 1956; Silage studies I: Studies on fermentation processes in silage. The role of temperature. Arch. Mikrobiol 23:366
    [Google Scholar]
  26. Orla-Jensen S. 1947; On the identification of lactic acid bacteria, especially in silages. Rep. Proc. TV. int. Congr. Microbiol. Copenhagen p. 503
    [Google Scholar]
  27. Orla-Jensen S., Orla-Jensen A. D., Kjaer A. 1947; On the ensiling of lucerne by means of lactic acid fermentation. Leeuwenhoek ned. Tijdschr 12:97
    [Google Scholar]
  28. Roessler W. G., McClung L. S. 1943; Suggested method for use of vanillin as a test reagent for indole and skatole production by bacteria. J. Bact 45:413
    [Google Scholar]
  29. Rogers L. A., Whittier E. O. 1928; Limiting factors in the lactic fermentation. J. Bact 16:211
    [Google Scholar]
  30. Rosenberger R. F. 1951; The development of methods for the study of obligate anaerobes in silage. Proc. Soc. appl. Bact 14:161
    [Google Scholar]
  31. Rosenberger R. F. 1956; The isolation and cultivation of obligate anaerobes from silage. J. appl. Bact 19:173
    [Google Scholar]
  32. Ruschmann G. 1939; Die wissenschaftlichen Grundlagen der Gärfutterbereitung. Landw. Jb 88:135
    [Google Scholar]
  33. Ruschmann G., Harder L. 1931; Vorkommen von Buttersäurebakterien im Silofutter und ihre Bedeutung. Zbl. Bakt Abt. 2 83:325
    [Google Scholar]
  34. Ruschmann G., Koch R. 1930; Untersuchungen über den Nachweis und die Verbreitung der Milchsäurebakterien auf den zur Einsäuerung gelangenden Grünfutterpflanzen. Zbl. Bakt Abt 2 80:1
    [Google Scholar]
  35. Rydin C., Nilsson R., Tóth L. 1956; Silage studies II: Studies on fermentation processes in silage. The effect of various carbohydrates as supplements. Arch. Mikrobiol 23:376
    [Google Scholar]
  36. Scheunert A., Schieblich M. 1926; Die bakteriellen Vorgänge bei der Grünfutterkonservierung. Arb. dtsch. LandwGes 340:145
    [Google Scholar]
  37. Stern R. M., Frazier W. C. 1941; Physiological characteristics of lactic acid bacteria near the maximum growth temperature. I. Growth and acid production. J. Bact 42:479
    [Google Scholar]
  38. Stirling A. C. 1951; Bacterial changes in experimental laboratory silage. Proc. Soc. appl. Bact 14:151
    [Google Scholar]
  39. Stirling A. C. 1953; Lactobacilli and silage-making. Proc. Soc. appl. Bact 16:27
    [Google Scholar]
  40. Watson S. J. 1939 The Science and Practice of conservation: Grass and Forage Crops London: Fertiliser and Feeding Stuffs Journal;
    [Google Scholar]
  41. Wylam C. B. 1953; Analytical studies on the carbohydrates of grasses and clovers. III. Carbohydrate breakdown during wilting and ensilage. J. Sci. Fd Agric 4:527
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-1-112
Loading
/content/journal/micro/10.1099/00221287-19-1-112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error