1887

Abstract

SUMMARY: Certain bacteria of the genus attack the tartaric acids by means of inducible stereospecific dehydrases. Each dehydrase converts its specific isomeric substrate to oxaloacetic acid; in crude cell-free extracts the oxaloacetic acid is in turn converted to pyruvic acid, which accumulates. By treatment of the crude extracts with ethylenediaminetetraacetic acid (EDTA), substantial accumulations of oxaloacetic acid can be obtained from the and -tartaric acids, and assays for these two dehydrases, based on the accumulation of oxaloacetic acid in the presence of EDTA, have been developed. This procedure cannot be used to assay the -tartaric acid dehydrase, which is itself very sensitive to EDTA. The patterns of inhibition of the three dehydrases by compounds sterically related to their substrates have been explored, and the findings are interpreted in terms of the minimal steric requirements for enzyme-substrate combination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-16-2-472
1957-04-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/16/2/mic-16-2-472.html?itemId=/content/journal/micro/10.1099/00221287-16-2-472&mimeType=html&fmt=ahah

References

  1. Akamatsu S. 1950; β-Carboxylase model. J. Biochem, Tokyo 37:65
    [Google Scholar]
  2. Barker H. A. 1936; On the fermentation of some dibasic C4-acids by Aerobacter aerogenes . Proc. Acad. Sci. Amst 39:674
    [Google Scholar]
  3. Buchanan C. 1951; Configurational notation of the tartaric acids. Nature; Lond: 167689
    [Google Scholar]
  4. Cahn R. S., Ingold C. K. 1951; Specification of configuration about quadricovalent asymmetric atoms. J. chem. Soc p. 612
    [Google Scholar]
  5. Cammarata P. S., Cohen P. P. 1951; Spectrophotometric measurement of transamination reactions. J. biol. Chem 193:45
    [Google Scholar]
  6. Cavallini D., Frontali N., Toshi G. 1949; Keto acid content of human blood and urine. Nature; Lond: 164792
    [Google Scholar]
  7. Friedman T. E., Haugen G. E. 1943; Pyruvic Acid. II. The determination of keto acids in blood and urine. J. biol. Chem 147:415
    [Google Scholar]
  8. Green D. E., Leloir L. F., Nocito V. 1945; Transaminases. J. biol. Chem 161:559
    [Google Scholar]
  9. Krampitz L. O., Lynen F. 1956; Formation of oxalacetate from d-tartrate. Fed. Proc 15:292
    [Google Scholar]
  10. Kun E. 1956; Enzymatic mechanism of oxidation of tartrate. J. biol. Chem 221:223
    [Google Scholar]
  11. Kun E., Davies D. D. 1956; Enzymatic components of the tartrate oxidizing system of beef heart mitochondria. Fed. Proc 15:294
    [Google Scholar]
  12. Kun E., Hernandez M. G. 1956; The oxidation of tartaric acid by an enzyme system of mitochondria. J. biol. Chem 218:201
    [Google Scholar]
  13. Martin R. W., Foster J. W. 1955; Production of trans-l-epoxysuccinic acid by fungi and its microbiological conversion to weso-tartaric acid. J. Bact 70:405
    [Google Scholar]
  14. Matchett J. R., Legault R. R., Nimmo C. C., Notter G. K. 1944; Tartrates from grape wastes. Industr. Engng Chem. (Industr.) 36:851
    [Google Scholar]
  15. Mercer W. A., Vaughn R. H. 1951; The characteristics of some thermophilic tartrate-fermenting anaerobes. J. Bact 62:27
    [Google Scholar]
  16. Nomura M., Sakaguchi K. 1955; The decomposition of L (+) tartrate by micro-organisms. J. gen. Appl. Microbiol. (Japan) 1:77
    [Google Scholar]
  17. Pasteur L. 1860; Note relative à Penicillium glaucum et à la dissymétrie moléculaire des produits organiques naturels. C.R. Acad. Sci, Paris 51:298
    [Google Scholar]
  18. Pasteur L. 1863; Nouvel exemple de fermentation déterminée par des animalcules infusoires pouvant vivre sans gaz oxygène libre et en dehors de tout contact avec l’air de l’atmosphère. C.R. Acad. Sci, Paris 56:416
    [Google Scholar]
  19. Rivière J. W. M. la. 1956; Intermediate products in tartrate decomposition by cell-free extracts of Pseudomonas putida under anaerobic conditions. Biochim. biophys. Acta 21:190
    [Google Scholar]
  20. Scholefield P. G. 1955; The oxidation of mafic and weso-tartaric acids in pigeon-liver extracts. Biochem. J 59:177
    [Google Scholar]
  21. Shilo M., Stanier R. Y. 1957; The utilization of the tartaric acids by pseudomonads. J. gen. Microbiol 16:482
    [Google Scholar]
  22. Sistrom W. R., Stanier R. Y. 1953; The mechanism of catechol oxidation by Mycobacterium butyricum . J. Bact 66:404
    [Google Scholar]
  23. Stadtman T. C., Vaughn R. H., Marsh G. L. 1945; Decomposition of tartrates by some common fungi. J. Bact 50:691
    [Google Scholar]
  24. Tabachnick J., Vaughn R. H. 1948; Characteristics of tartrate-fermenting species of Clostridium . J. Bact 56:435
    [Google Scholar]
  25. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. 1946; Decomposition of tartrates by the coliform bacteria. J. Bact 52:311
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-16-2-472
Loading
/content/journal/micro/10.1099/00221287-16-2-472
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error