1887

Abstract

Summary: Zygote formation between strains of K-12 is dependent on a supply of free energy made available by the oxidation of carbohydrate via the Krebs cycle reactions. The simultaneous addition of glucose and a dicarboxylic acid of the tricarboxylic acid cycle, or an immediate precursor, to mating cells markedly stimulates the number of zygotes formed. Reagents known to inhibit reactions of the Krebs cycle inhibit zygote formation. Evidence was obtained that synthesis of protein or either pentose or deoxypentose nucleic acid was not necessary for zygote formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-16-1-120
1957-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/16/1/mic-16-1-120.html?itemId=/content/journal/micro/10.1099/00221287-16-1-120&mimeType=html&fmt=ahah

References

  1. Abelson P.H., Bolton E.T., Britten R., Cowie D.B., Roberts R.B. 1953; Synthesis of the aspartic and glutamic families of amino acids in Escherichia coli. . Proc. nat. Acad. Sci., Wash. 39:1020
    [Google Scholar]
  2. Ajl S.J., Kamen M. 1950; Studies on mechanism of acetate oxidation by bacteria. Fed. Proc. 9:143
    [Google Scholar]
  3. Buffa P., Peters R.A. 1949; The in vivo formation of citrate induced by fluoroacetate and its significance. J. Physiol. 110:488
    [Google Scholar]
  4. Cavalli L.L. 1950; La sessualita nei batteri. Boll. Ist. sieroter.Milano 29:281
    [Google Scholar]
  5. Cavalli L.L., Lederberg J., Lederberg E.M. 1953; An infective factor controlling sex compatibility in Bacterium coli. . J. gen. Microbiol. 8:89
    [Google Scholar]
  6. Elsden S.R. 1954; Fourth Symposium of the Society for General Microbiology. Autotrophic Micro-organisms. Cambridge University Press;
    [Google Scholar]
  7. Hayes W. 1952; Recombination in Bacterium coli K-12: unidirectional transfer of genetic material. Nature; Lond.: 169118
    [Google Scholar]
  8. Hayes W. 1953a; Observations on a transmissible agent determining sexual differentiation in Bacterium coli. . J. gen. Microbiol. 8:72
    [Google Scholar]
  9. Hayes W. 1953b; The mechanism of genetic recombination in Escherichia coli. . Cold. Spr. Harb. Symp. quant. Biol. 18:75
    [Google Scholar]
  10. Hayes W. 1957; The kinetics of the mating process in Escherichia coli. . J. gen. Microbiol. 16:97
    [Google Scholar]
  11. Johnson C.B., Cohn E.M. 1952; Effect of certain acids of the tricarboxylic acid cycle on the growth of Escherichia coli. . J. Bact. 63:735
    [Google Scholar]
  12. Kelner A. 1953; Growth, respiration, nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. . J. Bact. 65:252
    [Google Scholar]
  13. Lederberg J. 1947; Gene recombination and linked segregations in Escherichia coli. . Genetics 32:505
    [Google Scholar]
  14. Lederberg J. 1950; The selection of genetic recombinations with bacterial growth inhibitors. J. Bact. 59:211
    [Google Scholar]
  15. Lederberg J., Cavalli L.L., Lederberg E.M. 1952; Sex compatibility in Escherichia coli. . Genetics 37:720
    [Google Scholar]
  16. Lederberg J., Lederberg E.M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact. 63:399
    [Google Scholar]
  17. Lederberg J., Lederberg E.M., Zinder N.D., Lively E.R. 1951; Recombination analysis of bacterial heredity. Cold. Spr. Harb. Symp. quant. Biol. 16:413
    [Google Scholar]
  18. Lederberg J., Tatum E.L. 1946; Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold. Spr. Harb. Symp. quant. Biol. 11:113
    [Google Scholar]
  19. Lichstein H.C., Cohen P.P. 1944; Transamination in bacteria. J. biol. Ckem. 157:85
    [Google Scholar]
  20. Liebecq C. 1949; The toxicity of fluoroacetate and the tricarboxylic acid cycle. Biochem. biophys.Acta 3:215
    [Google Scholar]
  21. Loomis W.F., Lipmann F. 1948; Reversible inhibition of the coupling between phosphorylation and oxidation. J. biol. Chem. 173:807
    [Google Scholar]
  22. Lotspeich W.D., Peters R.A., Wilson T.H. 1952; The inhibition of aconitase by ‘Inhibitor Fractions’ isolated from tissues poisoned with fluoroacetate. Biochem. J. 51:20
    [Google Scholar]
  23. Moses V. 1955; Tricarboxylic acid cycle reactions in the fungus Zygorrhynchus moelleri. . J. gen. Microbiol. 13:235
    [Google Scholar]
  24. Nelson T.C. 1951; Kinetics of genetic recombination in Escherichia coli. . Genetics 36:162
    [Google Scholar]
  25. Newcombe H.B., Nyholm M.H. 1950; Anomalous segregation in crosses of Escherichia coli. . Amer. Nat. 84:457
    [Google Scholar]
  26. Pollock M.R. 1953 Adaptation in Micro-organisms. Third Symposium of the Society for General Microbiology. Cambridge University Press;
    [Google Scholar]
  27. Quastel J.H., Woolf B. 1926; The equilibrium between l-aspartic acid, fumaric acid and ammonia in presence of resting bacteria. Biochem. J. 20:545
    [Google Scholar]
  28. Reichard P. 1954; The enzymatic synthesis of ureidosuccinic acid in rat liver mitochondria. Acta chem. scand. 8:795
    [Google Scholar]
  29. Refaske R., Wilson P.W. 1953; Oxidation of intermediates of the tricarboxylic acid cycle by Azobacter agile. . Proc. nat. Acad. Sci., Wash. 39:225
    [Google Scholar]
  30. Roberts R.B., Cowie D.B., Britten R., Abelson P.H. 1953; The role of the tricarboxylic acid cycle in amino acid synthesis in Escherichia coli. . Proc. nat. Acad. Sci., Wash. 39:1013
    [Google Scholar]
  31. Rothfels K.H. 1952; Gene linearity and negative interference in crosses of Escherichia coli. . Genetics 37:297
    [Google Scholar]
  32. Saz H.E., Krampitz L.O. 1954; Acetic acid oxidation by Escherichia coli: evidence for the occurrence of a tricarboxylic acid cycle. J. Bact. 67:419
    [Google Scholar]
  33. Skipper H.E., Mitchell J.H., Bennett L.L., Newton M.A., Simpson L., Edison M. 1951; Observations on inhibition of nucleic acid synthesis resulting from administration of nitrogen mustard, urethan, colchicine 2,6-diaminopurine, 8-azaguanine, potassium arsenite and cortisone. Cancer Res. 11:145
    [Google Scholar]
  34. Swenson P.A. 1950; The action spectrum of the inhibition of galactozymase production by ultraviolet light. Proc. nat. Acad. Sci., Wash. 36:699
    [Google Scholar]
  35. Tatum E.L., Lederberg J. 1947; Gene recombination in the bacterium Escherichia coli. . J. Bact. 53:673
    [Google Scholar]
  36. Teply L.J. 1949; Studies on the cyclophorase system XIV.Mechanism of action of 2,4-dinitrophenol. Arch. Biochem. Biophys. 24:383
    [Google Scholar]
  37. Wisseman C.L., Smadel J.E., Hahn F.E., Hofps H.E. 1954; Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. . J. Bact. 67:662
    [Google Scholar]
  38. Wollman E., Jacob F., Hayes W. 1956; Conjugation and genetic recombination in Escherichia coli K-12. Cold. Spr. Harh. Symp. quant. Biol. 21: in the Press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-16-1-120
Loading
/content/journal/micro/10.1099/00221287-16-1-120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error