1887

Abstract

SUMMARY: Evidence is presented that under the conditions described 11 strains of spp., representing strains described as like or , require carbon dioxide for anaerobic growth. Some of these strains, under these conditions, are obligate anaerobes to microaerophils, while others appear to be facultative anaerobes. Cultures which are capable of aerobic growth may or may not require carbon dioxide for such growth. Of three strains of tested, all required carbon dioxide for anaerobic growth. One avian strain required carbon dioxide to give limited aerobic growth; the remaining strains did hot grow significantly under aerobic conditions. Comparisons of several strains of spp. with indicated that of eleven sugars tested, the sugar of choice for growth of spp. was glucose or maltose, whereas lactose or maltose was preferred by strains of . All strains of each group of organisms were found to be catalase-negative; none liquefied gelatin; all eleven strains of spp. reduced nitrate to nitrite, but none of the bifid strains possessed this ability; production of acetylmethylcarbinol was variable in both groups. All strains of spp. tested formed (+) lactic acid, although the Tesults suggested that small amounts of (−) lactic acid were also formed. Fermentation analyses indicated that strains of and spp. form the same products from glucose and carbon dioxide (lactic, acetic, formic and succinic acids). However, strains of spp. form predominantly lactic acid with small amounts of acetic, formic and succinic acids; whereas the strains of form approximately equal amounts of lactic and acetic acids (based on glucose fermented) with trace amounts of succinic and formic acids. Actinomyces strains fermented but 34-59 % of the glucose supplied as compared to the strains of which used from 59 to 89 % of the glucose (1 % glucose medium).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-15-3-428
1956-12-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/15/3/mic-15-3-428.html?itemId=/content/journal/micro/10.1099/00221287-15-3-428&mimeType=html&fmt=ahah

References

  1. Bard R. C., Gunsalus I. C. 1950; Glucose metabolism of Clostridium perfringens: existence of a rnetallo-aldolase. J. Bact 59:387
    [Google Scholar]
  2. Barker S. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological materials. J. biol. Chem 138:535
    [Google Scholar]
  3. Beerens H. 1953; Étude comparative de six souches de bactéries anaérobies non sporuleeés: Actinomyces bovis A.T.C.C. 8373 (bovine) A. bovis A.T.C.C. 8374 (humaine), A. Israeli var. liquefaciens, Corynebaderium acnes, Corynebaderium avidium, Corynebaderium liquefaciens. Ann. Inst. Pasteur 84:1026
    [Google Scholar]
  4. Block R. J., Durrum E. L., Zweig G. 1955 In A Manual of Paper Chromatography and Paper Electrophoresis New York: Academic Press, Inc;
    [Google Scholar]
  5. Erikson D. 1940; Pathogenic anaerobic organisms of the Actinomyces group. Spec. Hep. Ser., med. Res. Coun. Lond240
    [Google Scholar]
  6. Erikson D., Porteous J. W. 1953; The cultivation of Actinomyces israelii in a progressively less complex medium. J. gen. Microbiol 8:464
    [Google Scholar]
  7. Erikson D., Porteous J. W. 1955; Commensalism in pathogenic anaerobic Actinomyces cultures. J. gen. Microbiol 13:261
    [Google Scholar]
  8. Frank H. H., Skinner C. E. 1954; The relationship between Actinomyces bovisand Lactobacillus bifidus. Mycologia 46:728
    [Google Scholar]
  9. Friedemann T. E. 1938; The identification and quantitative determination of volatile alcohols and acids. J. biol. Chem 123:161
    [Google Scholar]
  10. Gest H. 1952; Molecular hydrogen: oxidation and formation in cell free systems. Phosph. Metabolism 2:522
    [Google Scholar]
  11. Gyllenberg H. G. 1955; The development of the ‘Straight Rod Type’ of Lactobacillus bifidus. J. gen. Microbiol 13:394
    [Google Scholar]
  12. György P., Norris R. F., Rose C. S. 1954; Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. Biophys 48:193
    [Google Scholar]
  13. Hayward A. C., Hale C. M. F., Bisset K. A. 1955; The morphology and relationships of ‘Lactobacillus’ bifidus. J. gen. Microbiol 13:292
    [Google Scholar]
  14. Hodges E. A., Coolidge T. B., Harrison R. W. 1951; Further observations on metabolic changes in oral lactobacilli. J. infect. Dis 88:237
    [Google Scholar]
  15. Howell A., Pine L. 1956; Studies on the growth of species of Actinomyces. I. Cultivation in a synthetic medium with starch. J. Bact 71:47
    [Google Scholar]
  16. Huhtanen C. N. 1955; Pantothine and casein hydrolysate in the growth of certain Lactobacilli. Proc. Soc. exp. Biol., N.Y 88:311
    [Google Scholar]
  17. Johnson M. J. 1949; A rapid micromethod for estimation of non-volatile organic matter. J. biol. Chem 181:707
    [Google Scholar]
  18. Kennedy E. P., Barker H. A. 1951; Paper chromatography of volatile acids. Analyt. Chem 23:1033
    [Google Scholar]
  19. Ludwig T. G., Sullivan H. R. 1952; Studies of the flora of the mouth. VIII. An examination of selected human strains of anaerobic actinomyces. Aust.J. exp. Biol. med. Sci 30:81
    [Google Scholar]
  20. Manual of methods for Pure Culture Study of Bacteria 1946 Geneva, N.Y: Biotech Publications;
  21. Negroni P., Fischer I. 1944; Estudio sobre el Lactobacillus bifidus (Tissier) Kulp y Rettger. Rev. Soc. argent. Biol 20:313
    [Google Scholar]
  22. Neish H. 1950; Analytical methods for bacterial fermentations. Nat. Res. Coun. Canada, Saskatoon Rep. no 46–8–3
    [Google Scholar]
  23. Norris R. F., Flanders T., Tomarelli R. M., György P. 1950; The isolation and cultivation of Lactobacillus bifidus: A comparison of branched and unbranched strains. J. Bact 60:681
    [Google Scholar]
  24. Orla-Jensen S. 1943; The lactic acid bacteria. K. danskevidensk. Selsk 8 ser 5:81
    [Google Scholar]
  25. Pappenheimer A. M., Shaskan E. 1944; Effect of iron on carbohydrate metabolism of Clostridium welchii. J. biol. Chem 155:265
    [Google Scholar]
  26. Pederson C. S., Peterson W. H., Fred E. B. 1926; The forms of lactic acid produced by pure and mixed cultures of bacteria. J. biol. Chem 68:151
    [Google Scholar]
  27. Peters J. P., Van Slyke D. D. 1932 Quantitative Clinical Chemistry Baltimore: The Williams and Wilkins Co;
    [Google Scholar]
  28. Phares E. F., Mosbach E. H., Denison F. W., Carson S. F. 1952; Separation of biosynthetic organic acids by partition chromatography. Analyt. Chem 24:660
    [Google Scholar]
  29. Puntoni V. 1937; Sulle relazioni fra il b. bifldo gli attinomiceti anaerobi typo Wolff-Israel. Ann. Igiene (sper) 47:157
    [Google Scholar]
  30. Rabinowitz J. C., Barker H. A. 1956; Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. biol. Chem 218:147
    [Google Scholar]
  31. Redfield R. R. 1953; Two-dimensional paper chromatographic systems with high resolving power of amino acids. Biochim. biophys. Acta 10:344
    [Google Scholar]
  32. Rose C. S., Luchi R. J., Avery A., Norris R. F., György P. 1953; Mono- and disaccharides in growth of Lactobacillus bifidus and its mutants. Proc. Soc. exp. Biol., N.Y 81:712
    [Google Scholar]
  33. Rosebury T., Epps L. J., Clark A. R. 1944; A study of the isolation, cultivation, and pathogenicity of Actinomyces israeli recovered from the human mouth and from actinomycosis in man. J. infect. Dis 74:131
    [Google Scholar]
  34. Smith G. F. 1950 Analytical Applications of Periodic Acid, Iodic Acid and their Salts Columbus, U.S.A: The G. Frederick Smith Chemical Co;
    [Google Scholar]
  35. Thompson L. 1950; Isolation and comparison of Actinomyces from human and bovine infections. Proc. Mayo Clin 25:81
    [Google Scholar]
  36. Thompson L., Lovestedt S. A. 1951; An Actinomyces-like organism obtained from the human mouth. Proc. Mayo Clin 26:169
    [Google Scholar]
  37. Umbreit W. W., Burris R. H., Stauffer J. F. 1949 Manometric Techniques and Tissue Metabolism, 2nd ed. Minneapolis: Burgess Publishing Co;
    [Google Scholar]
  38. Veltre F., Shorb M. S., Pelczar M. J. 1953; Nutritional requirements of Lactobacillus bifidus isolated from poults and chicks. Proc. Soc. exp. Biol., N.Y 83:284
    [Google Scholar]
  39. Vuillemin P. 1931 Les champignons parasites et les mycoses de l’homme Paris: Lechevalier;
    [Google Scholar]
  40. Waring W. S., Werkman C. H. 1944; Iron deficiency in bacterial metabolism. Arch. Biochem 4:75
    [Google Scholar]
  41. Westerfeld W. W. 1945; A colorimetric determination of blood acetoin. J. biol. Chem 161:495
    [Google Scholar]
  42. Winnick T. H. 1942; Determination of ethyl alcohol by microdiffusion. Industr. Engng Chem. (Anal.) 14:523
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-15-3-428
Loading
/content/journal/micro/10.1099/00221287-15-3-428
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error