1887

Abstract

SUMMARY: A growth requirement for haematin by a streptomycin-resistant strain of was abolished by adding pyruvate or acetate. Growth in the absence of haematin was improved by addition of purines and uracil. Under anaerobic conditions growth occurred in the presence of nitrate when haematin was added. Suspensions of organisms grown in the absence of haematin reduced nitrate to nitrite when incubated in buffered glucose with haematin, and the amount of nitrite formed was proportional to the concentration of haematin over a range from 0·03 to 0·25 m-mole/ml. This method was used to assay iron protoporphyrin formed by suspensions of This organism synthesizes iron protoporphyrin as well as free porphyrins when incubated anaerobically in the light with -aminolaevulic acid, iron salts and an oxidizable substrate; cobalt ions inhibit the formation of iron protoporphyrin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-15-2-404
1956-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/15/2/mic-15-2-404.html?itemId=/content/journal/micro/10.1099/00221287-15-2-404&mimeType=html&fmt=ahah

References

  1. Chu T.C., Chu E.J.-H. 1955; Paper chromatography of iron, complexes of porphyrins. J. biol. Chem. 212:1
    [Google Scholar]
  2. Drabkin D.L. 1942; Speetrophotometric studies. X. Structural interpretation of the spectra of cyanide, pyridine and carbon monoxide derivatives of cytochrome c and haemoglobin. J. biol. Chem. 146:605
    [Google Scholar]
  3. Elsden S.R. 1954; The utilization of organic compounds by photosynthetic bacteria. In Autotrophic Microorganisms. Symp. Soc. gen. Microbiol. 4202 Cambridge University Press.;
    [Google Scholar]
  4. Gilder II., Granick S. 1947; Studies on the Haemophilus group of organisms. Quantitative aspects of growth on various porphin compounds. J. gen. Physiol. 31:103
    [Google Scholar]
  5. Granick S., Gilder H. 1946; The porphyrin requirements of Haemophilus influenzae and some functions of the vinyl and propionic acid side chains of haem. J. gen. Physiol. 30:1
    [Google Scholar]
  6. Grinstein M., Wintrobe M.M. 1948; Speetrophotometric micromethod for the quantitative determination of the free erythrocyte protoporphyrin. J.biol. Chem. 172:459
    [Google Scholar]
  7. Gunsalus I.C. 1954; Group transfer and acyl-generating functions of lipoic acid derivatives. In The Mechanism of Enzyme Action p. 545, 6th ed.. McElroy W.D., Glass B. Ed. Baltimore:: The Johns Hopkins Press;
    [Google Scholar]
  8. Jensen J., Thofern E. 1953a; Chlorohämin (Ferriporpliyrinchlorid) als Bakterienwuchsstoff. I. Z. Naturf. 8b:599
    [Google Scholar]
  9. Jensen J., Thofern E. 1953b; Chlorohämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff. II. Zur Synthese der Hamatinfermente. Z. Naturf. 8b:604
    [Google Scholar]
  10. Jensen J., Thofern E. 1953c; Chlorohämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff. III. Competitive Hemmung der Hamatinfermentsynthese. Z. Naturf. 8b:697
    [Google Scholar]
  11. Jensen J., Thofern E. 1954; Chlorohämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff. IV. Zum Cytoehromsystem von M. pyog. var aureus. Z. Naturf. 96:596
    [Google Scholar]
  12. Kamen M.D. 1955; Bacterial haem proteins. Part 2 of symposium on electron transport in the metabolism of microorganisms. Bad. Rev. 19:250
    [Google Scholar]
  13. Kluyver A.J. 1953; Some aspects of nitrate reduction. Symposium on Microbial Metabolism p. 71 Vlth Congr. int, Microbiol. Rome.:
    [Google Scholar]
  14. Krebs H.A. 1937; Dismutation of pyruvic acid in gonococcus and staphylococcus. Biochem.J. 31:661
    [Google Scholar]
  15. Laforet M.T., Thomas E.D. 1956; The effect of cobalt on haem synthesis by bone marrow in vitro. J. biol. Chem. 218:595
    [Google Scholar]
  16. Lascelles J. 1955; The formation of porphyrins by photosynthetic bacteria. In The Biosynthesis of Porphyrins and Porphyrin Metabolism, Ciha Foundation Conf. p. 265, 6th ed.. Wolstenholme G.E.W. Ed. London:: J. and A. Churchill Ltd.;
    [Google Scholar]
  17. Lascelles J. 1956; The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem. J. 62:78
    [Google Scholar]
  18. Lascelles J., Woods D.D. 1952; The synthesis of ‘folic acid’ by Bacterium coli and Staphylococcus aureus and its inhibition by sulphonamides. Brit.J. exp. Path. 33:288
    [Google Scholar]
  19. Lemberg R., Legge J.W. 1949 Haematin Compounds and Bile Pigments. London:: Interscience Publishers Ltd.;
    [Google Scholar]
  20. Lwoff M. 1951; The nutrition of parasitic flagellates (Trypanosomidae, Tricho-monadinae). Chapter in Protozoa 1: pp. 129 Ed. New York:: Academic Press Inc.;
    [Google Scholar]
  21. Nicholas D.J.D., Nason A. 1954; Mechanism of action of nitrate reductase from Neurospora. J.biol. Chem. 211:183
    [Google Scholar]
  22. Nicholas D.J.D., Nason A. 1955; Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J. Bact. 69:580
    [Google Scholar]
  23. Niel Van C.B. 1944; The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bad. Rev. 8:1
    [Google Scholar]
  24. Pollock M.R. 1946; Adaptation of ‘nitratase’ in washed suspensions of bacteria. Brit.J. exp. Path. 27:419
    [Google Scholar]
  25. Postgate J.R. 1955; Cytochrome c3, a bifunctional haematohaematin. Biochim. biophys.Acta 18:427
    [Google Scholar]
  26. Postgate J.R. 1956; Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J. gen. Microbiol. 14:545
    [Google Scholar]
  27. Richardson G.M. 1936; The nutrition of Staphylococcus aureus. Necessity for uracil in anaerobic growth. Biochem.J. 30:2184
    [Google Scholar]
  28. Rider B.F., Mellon M.G. 1946; Colorimetric determination of nitrites. Jndustr. Engng Chem. (Anal.) 18:96
    [Google Scholar]
  29. Sato R., Egami F. 1949; Studies on nitrate reductase. III. Bull. chem. Soc.Japan 22:137
    [Google Scholar]
  30. Sato R., Niwa M. 1952; Studies on nitrate reductase. VII. Reinvestigation on the identity of the enzyme with cytochrome 6. Bull. chem. Soc.Japan 25:202
    [Google Scholar]
  31. Smith W., Hale J.H., O’callaghan C.H. 1953; Haem utilization and nitrate reduction by Haemophilus influenzae. J. Path. Bact. 65:229
    [Google Scholar]
  32. Steinman H.G., Oyama V.I, Schulze H.O. 1954; Carbon dioxide, cocarboxylase, citrovorum factor and coenzyme A as essential growth factors for a saprophytic treponeme (S-69). J.biol. Chem. 211:327
    [Google Scholar]
  33. Verhoeven W., Goos J.J.C. 1954; Studies on true dissimilatory nitrate reduction. 1. Fate of the hydrogen donator in bacterial nitrate reduction. Leeuwenhoek ned. Tijdschr. 20:93
    [Google Scholar]
  34. Vernon L.P., Kamen M.D. 1954; Haematin compounds in photosynthetic bacteria. J. biol. Chem. 211:643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-15-2-404
Loading
/content/journal/micro/10.1099/00221287-15-2-404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error