1887

Abstract

Proteome analysis of bacteria that can detoxify harmful organic compounds enables the discovery of enzymes involved in the biodegradation of these substances and proteins that protect the cell against poisoning. Exposure of MC1 to 2,4-dichlorophenoxypropionic acid and its metabolites 2,4-dichlorophenol and 3,5-dichlorocatechol during growth on pyruvate as a source of carbon and energy induced several proteins. Contrary to the general hypothesis that lipophilic or reactive compounds induce heat shock or oxidative stress proteins, no induction of the GroEL, DnaK and AhpC proteins that were used as markers for the induction of heat shock and oxidative stress responses was observed. However, two chlorocatechol1,2-dioxygenases, identified by amino terminal sequence analysis, were induced. Both enzymes catalyse the conversion of 3,5-dichlorocatechol to 2,4-dichloro-,-muconate indicating that biodegradation is a major mechanism of resistance in the detoxifying bacterium MC1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2883
2002-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482883a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2883&mimeType=html&fmt=ahah

References

  1. Benndorf D., Loffhagen N., Babel W. 1999; Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus . Electrophoresis20:781–789[CrossRef]
    [Google Scholar]
  2. Benndorf D., Loffhagen N., Babel W. 2001; Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett200:247–252[CrossRef]
    [Google Scholar]
  3. Blom A., Harder W., Matin A. 1992; Unique and overlapping pollutant stress proteins of Escherichia coli . Appl Environ Microbiol58:331–334
    [Google Scholar]
  4. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis8:93–99[CrossRef]
    [Google Scholar]
  5. Cho Y.-S., Park S.-H., Kim C.-K., Oh K.-H. 2000; Induction of stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field. Curr Microbiol41:33–38[CrossRef]
    [Google Scholar]
  6. Duxbury J. M., Tiedje J. M., Alexander M., Dawson J. E. 1970; 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem18:199–201[CrossRef]
    [Google Scholar]
  7. Evans W. C., Smith B. S., Moss P., Fernley H. N. 1971; Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J122:509–517
    [Google Scholar]
  8. Fukumori F., Hausinger R. P. 1993; Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J Biol Chem268:24311–24317
    [Google Scholar]
  9. Holtzhauer M., Hahn V. 1988; Biochemische Labormethoden: Arbeitsvorschriften und Tabellen, pp2–3 Berlin: Springer;
    [Google Scholar]
  10. Horvath M., Ditzelmüller G., Loidl M., Streichsbier F. 1990; Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium. Appl Microbiol Biotechnol33:213–216
    [Google Scholar]
  11. Jin Y., Cerletti N. 1992; Western blotting of transforming growth factor β2: optimization of the electrophoretic transfer. Appl Theor Electrophor3:85–90
    [Google Scholar]
  12. Kaphammer B., Kukor J. J., Olsen R. H. 1990; Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J Bacteriol172:2280–2286
    [Google Scholar]
  13. Kilpi S. 1980; Degradation of some phenoxy acid herbicides by mixed cultures of bacteria isolated from soil treated with 2-(2-methyl-4-chloro)phenoxypropionic acid. Microb Ecol6:261–270[CrossRef]
    [Google Scholar]
  14. Lupi C. G., Colangelo T., Mason C. A. 1995; Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-chlorophenol. Appl Environ Microbiol61:2863–2872
    [Google Scholar]
  15. Müller R. H., Babel W. 1986; Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus . Arch Microbiol144:62–66[CrossRef]
    [Google Scholar]
  16. Müller R. H., Simon D., Große H. J., Babel W. 1997; Substrate inhibition under stationary growth conditions – nutristat experiments with Ralstonia eutropha JMP134 during growth on phenol and 2,4-dichlorophenoxyacetate. Appl Microbiol Biotechnol48:648–655[CrossRef]
    [Google Scholar]
  17. Müller R. H., Jorks S., Kleinsteuber S., Babel W. 1999; Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res154:241–246[CrossRef]
    [Google Scholar]
  18. Müller R. H., Kleinsteuber S., Babel W. 2001; Physiological and genetic characteristics of two bacterial strains exhibiting activity of utilizing phenoxypropionate- and phenoxyacetate-herbicides. Microbiol Res156:121–131[CrossRef]
    [Google Scholar]
  19. Pemberton J. M., Fisher P. R. 1977; 2,4-D plasmids and persistence. Nature268:732–733[CrossRef]
    [Google Scholar]
  20. Pieper D. H., Reineke W., Engesser K.-H., Knackmuss H.-J. 1988; Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol150:95–102[CrossRef]
    [Google Scholar]
  21. Schweigert N., Zehnder A. J. B., Eggen R. I. L. 2001; Chemical properties of catechols and their molecular modes of toxic action in cells from microorganisms to mammals. Environ Microbiol3:81–91[CrossRef]
    [Google Scholar]
  22. Uchiyama H., Shinohara Y., Tomioka N., Kusaskabe I. 1999; Induction and enhancement of stress proteins in a trichloroethylene-degrading methanotrophic bacterium, Methylocystis sp. M. FEMS Microbiol Lett170:125–130[CrossRef]
    [Google Scholar]
  23. van Dyk T. K., Majarian W. R., Konstantinov K. B., Young R. M., Dhurjati P. S., La Rossa R. A. 1994; Rapid and sensitive pollutant detection by induction of heat shock gene–bioluminescence gene fusions. Appl Environ Microbiol60:1414–1420
    [Google Scholar]
  24. Vasseur C., Labadie J., Hébraud M. 1999; Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis20:2204–2213[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2883
Loading
/content/journal/micro/10.1099/00221287-148-9-2883
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error