1887

Abstract

The authors have characterized a chromosomally localized two-gene operon, , which encodes a putative P1-type ATPase, CueA, and a MerR-type metalloregulatory protein, CueR, in PNL-MK25. Disruption of by the insertion of mini-Tn:: into the wild-type strain led to a mutant strain with a sixfold reduction in its tolerance to copper; however, the tolerance of this mutant strain to the other seven related transition metals tested was not affected. The sensitivity of the mutant strain was attributed to a higher level of accumulation of intracellular copper, suggesting the involvement of CueA in copper export. Insertion of the cloned operon into the copper-sensitive mutant strain fully restored its tolerance to copper. :: expression studies confirmed that the operon was transcriptionally regulated by copper and CueR. Studies done on the mutant strain complemented with and revealed partial functional redundancy of and , respectively, in copper tolerance. Thus, the results of this study clearly suggest the involvement of in copper homeostasis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2857
2002-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482857a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2857&mimeType=html&fmt=ahah

References

  1. Bayle, D., Wangler, S., Weitzenegger, T., Steinhilber, W., Volz, J., Przybylski, M., Schafer, K. P., Sachs, G. & Melchers, K. ( 1998; ). Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis. J Bacteriol 180, 317-329.
    [Google Scholar]
  2. Beard, S. J., Hashim, R., Membrillo-Hernandez, J., Hughes, M. N. & Poole, R. K. ( 1997; ). Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25, 883-891.[CrossRef]
    [Google Scholar]
  3. Bender, C. L. & Cooksey, D. A. ( 1986; ). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165, 534-541.
    [Google Scholar]
  4. Bloemberg, G. V., O’Toole, G. A., Lugtenberg, B. J. J. & Kolter, R. ( 1997; ). Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63, 4543-4551.
    [Google Scholar]
  5. Buffoni, F. & Ignesti, G. ( 2000; ). The copper-containing amine oxidases: biochemical aspects and functional role. Mol Genet Metab 71, 559-564.[CrossRef]
    [Google Scholar]
  6. Bull, P. C. & Cox, D. W. ( 1994; ). Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet 10, 246-252.[CrossRef]
    [Google Scholar]
  7. Camakaris, J., Voskoboinik, I. & Mercer, J. F. ( 1999; ). Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261, 225-232.[CrossRef]
    [Google Scholar]
  8. Casse, F., Boucher, C., Julliot, J. S., Michel, M. & Dénairé, I. ( 1979; ). Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113, 229-242.[CrossRef]
    [Google Scholar]
  9. Cervantes, C. & Gutierrez-Corona, F. ( 1994; ). Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14, 121-137.
    [Google Scholar]
  10. Cooksey, D. A., Azad, H. R., Cha, J. & Lim, C. ( 1990; ). Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 56, 431-435.
    [Google Scholar]
  11. Dameron, C. T. & Harrison, M. D. ( 1998; ). Mechanisms of protection against copper toxicity. Am J Clin Nutr 67 (Suppl. 5), 1091s–1097s.
    [Google Scholar]
  12. Degtyarenko, K. ( 2000; ). Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16, 851-864.[CrossRef]
    [Google Scholar]
  13. Govantes, F., Molina-Lopez, J. A. & Santero, E. ( 1996; ). Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae. J Bacteriol 178, 6817-6823.
    [Google Scholar]
  14. Grass, G. & Rensing, C. ( 2001; ). Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183, 2145-2147.[CrossRef]
    [Google Scholar]
  15. Hofacker, L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M. & Schuster, P. ( 1994; ). Fast folding and comparison of RNA secondary structures. Monatsh Chem 125, 167-188.[CrossRef]
    [Google Scholar]
  16. Lee, Y. A., Hendson, M., Panopoulos, N. J. & Schroth, M. N. ( 1994; ). Molecular cloning, chromososmal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176, 173-188.
    [Google Scholar]
  17. Lee, S. W., Glickmann, E. & Cooksey, D. A. ( 2001; ). Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67, 1437-1444.[CrossRef]
    [Google Scholar]
  18. Lim, C. K. & Cooksey, D. A. ( 1993; ). Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J Bacteriol 175, 4492-4498.
    [Google Scholar]
  19. Lund, P. A. & Brown, N. L. ( 1987; ). Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene 52, 207-214.[CrossRef]
    [Google Scholar]
  20. Lutsenko, S. & Kaplan, J. H. ( 1995; ). Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15607-15613.[CrossRef]
    [Google Scholar]
  21. McCarthy, J. E. G. & Gualerzi, C. ( 1990; ). Translational control of prokaryotic gene expression. Trends Genet 6, 78-85.[CrossRef]
    [Google Scholar]
  22. Mellano, M. A. & Cooksey, D. A. ( 1988; ). Induction of copper resistance operon from Pseudomonas syringae. J Bacteriol 170, 4399-4401.
    [Google Scholar]
  23. Odermatt, A. & Solioz, M. ( 1995; ). Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270, 4349-4354.[CrossRef]
    [Google Scholar]
  24. Odermatt, A., Suter, H., Krapf, R. & Solioz, M. ( 1993; ). Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268, 12775-12779.
    [Google Scholar]
  25. Outten, F. W., Outten, C. E., Hale, J. & O’Halloran, T. V. ( 2000; ). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275, 31024-31029.[CrossRef]
    [Google Scholar]
  26. Pillai, B. V. S. & Swarup, S. ( 2002; ). Elucidation of flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68, 143-151.[CrossRef]
    [Google Scholar]
  27. Rensing, C., Fan, B., Sharma, R., Mitra, B. & Rosen, B. P. ( 2000; ). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97, 652-656.[CrossRef]
    [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Solioz, M. & Vulpe, C. ( 1996; ). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21, 237-241.[CrossRef]
    [Google Scholar]
  30. Stall, R. E., Loschke, D. C. & Jones, J. B. ( 1986; ). Linkage of copper and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76, 240-243.[CrossRef]
    [Google Scholar]
  31. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159-271.[CrossRef]
    [Google Scholar]
  32. Stentz, R., Loizel, C., Malleret, C. & Zagorec, M. ( 2000; ). Development of genetic tools for Lactobacillus sakei: disruption of the β-galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl Environ Microbiol 66, 4272-4278.[CrossRef]
    [Google Scholar]
  33. Stoyanov, J. V., Hobman, J. L. & Brown, N. L. ( 2001; ). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39, 502-511.[CrossRef]
    [Google Scholar]
  34. Suarez, A., Guttler, A., Stratz, M., Staendner, L. H., Timmis, K. N. & Guzman, C. A. ( 1997; ). Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196, 69-74.[CrossRef]
    [Google Scholar]
  35. Syn, C. K. C. & Swarup, S. ( 2000; ). A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem 278, 86-90.[CrossRef]
    [Google Scholar]
  36. Tetaz, T. J. & Luke, R. K. J. ( 1983; ). Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154, 1263-1268.
    [Google Scholar]
  37. Tom-Petersen, A., Hosbond, C. & Nybroe, O. ( 2001; ). Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38, 59-67.[CrossRef]
    [Google Scholar]
  38. Vargas, E., Gutierrez, S., Ambriz, M. E. & Cervantes, C. ( 1995; ). Chromosome-encoded inducible copper resistance in Pseudomonas strains. Antonie Leeuwenhoek 68, 225-229.[CrossRef]
    [Google Scholar]
  39. Vats, N. & Lee, S. F. ( 2001; ). Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147, 653-662.
    [Google Scholar]
  40. Vieira, J. & Messing, J. ( 1982; ). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268.[CrossRef]
    [Google Scholar]
  41. Weissman, Z., Berdicevsky, I., Cavari, B. & Kornitzer, D. ( 2000; ). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci USA 97, 3520-3525.[CrossRef]
    [Google Scholar]
  42. Yang, C. H., Azad, H. R. & Cooksey, D. A. ( 1996; ). A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. Proc Natl Acad Sci USA 93, 7315-7320.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2857
Loading
/content/journal/micro/10.1099/00221287-148-9-2857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error