1887

Abstract

The complete nucleotide sequence of the small, cryptic plasmid pWKS1 (2697 bp) of DSM 11072 was determined. The G+C content of the sequence of this plasmid was 62 mol%. Analysis revealed that over 80% of the plasmid genome was covered by two ORFs, ORF1 and ORF2, which were capable of encoding putative peptides of 441 and 378 kDa, respectively. Mutational analysis showed that ORF2 was crucial for plasmid replication. The translational product of ORF2 shared local homologies with replication proteins of several θ-replicating lactococcal plasmids, as well as with the Rep proteins of plasmids residing in Gram-negative hosts. An A+T-rich region, located upstream of the gene and containing three tandemly repeated 21 bp long iteron-like sequences, served as the origin of replication (). ORF1 encoded a putative mobilization protein with similarities to mobilization proteins (Mob) from the broad-host-range plasmid pBBR1 and plasmids of Gram-positive bacteria. A plasmid bearing the MOB module of pWKS1 (the gene and the sequence) could be mobilized for transfer (by IncP RP4 transfer apparatus) at low frequency between different strains of . MOB modules of pWKS1 and pBBR1 were functionally complementary to each other. Hybridization analysis revealed that only plasmid pSOV1 (65 kb), among all of the paracoccal plasmids identified so far, carries sequences related to pWKS1. Plasmid pWKS1 could replicate in 10 species of and in , and , but it could not replicate in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2847
2002-09-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482847a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2847&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Antoine R., Locht C. 1992; Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol6:1785–1799[CrossRef]
    [Google Scholar]
  3. Ashiuchi M., Zakaria M. M., Sakaguchi Y., Yagi T. 1999; Sequence analysis of a cryptic plasmid from Flavobacterium sp. KP1, a psychrophilic bacterium. FEMS Microbiol Lett170:243–249[CrossRef]
    [Google Scholar]
  4. Baj J. 2000; Taxonomy of the genus Paracoccus . Acta Microbiol Pol49:185–200
    [Google Scholar]
  5. Baj J., Piechucka E., Bartosik D., Wlodarczyk M. 2000; Plasmid occurrence and diversity in the genus Paracoccus . Acta Microbiol Pol49:265–270
    [Google Scholar]
  6. Bartosik D., Bialkowska A., Baj J., Wlodarczyk M. 1997; Construction of mobilizable cloning vectors derived from pBGS18 and their application for analysis of replicator region of a pTAV202 mini-derivative of Paracoccus versutus pTAV1 plasmid. Acta Microbiol Pol46:379–383
    [Google Scholar]
  7. Bartosik D., Baj J., Wlodarczyk M. 1998; Molecular and functional analysis of pTAV320, a repABC type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology144:3149–3157[CrossRef]
    [Google Scholar]
  8. Bartosik D., Szymanik M., Wysocka E. 2001a; Identification of the partitioning site within the repABC- type replicon of the composite Paracoccus versutus plasmid pTAV1. J Bacteriol183:6234–6243[CrossRef]
    [Google Scholar]
  9. Bartosik D., Witkowska M., Baj J., Wlodarczyk M. 2001b; Characterization and sequence analysis of the replicator region of the novel plasmid pALC1 from Paracoccus alcaliphilus . Plasmid45:222–226[CrossRef]
    [Google Scholar]
  10. Bartosik D., Baj J., Bartosik A. A., Wlodarczyk M. 2002; Characterization of the replicator region of megaplasmid pTAV3 of Paracoccus versutus and search for the plasmid-encoded traits. Microbiology148:871–881
    [Google Scholar]
  11. Bates E. E., Gilbert H. J. 1989; Characterization of a cryptic plasmid from Lactobacillus plantarum . Gene85:253–258[CrossRef]
    [Google Scholar]
  12. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198[CrossRef]
    [Google Scholar]
  13. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1519[CrossRef]
    [Google Scholar]
  14. Chattoraj D. K. 2000; Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol37:467–476
    [Google Scholar]
  15. Coffey A., Harrington A., Kearney K., Daly C., Fitzgerald G. 1994; Nucleotide sequence and structural organization of the small, broad-host-range plasmid pCI411 from Leuconostoc lactis 533. Microbiology140:2263–2269[CrossRef]
    [Google Scholar]
  16. Crellin P. K., Rood J. I. 1998; Tn 4451 from Clostridium perfringens is a mobilizable transposon that encodes the functional Mob protein, TnpZ. Mol Microbiol27:631–642[CrossRef]
    [Google Scholar]
  17. del Solar G., Giraldo R., Ruiz-Echevarria M. J., Espinosa M., Diaz-Orejas R. 1998; Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev62:434–464
    [Google Scholar]
  18. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a bank of Rhizobium meliloti . Proc Natl Acad Sci USA77:7347–7351[CrossRef]
    [Google Scholar]
  19. Farı́as M. E., Espinosa M. 2000; Conjugal transfer of plasmid pMV158: uncoupling of the pMV158 origin of transfer from the mobilization gene mobM , and modulation of pMV158 transfer in Escherichia coli mediated by IncP plasmids. Microbiology146:2259–2265
    [Google Scholar]
  20. Farı́as M. E., Grohmann E., Espinosa M. 1999; Expression of the mobM gene of the streptococcal plasmid pMV158 in Lactococcus lactis subsp. lactis . FEMS Microbiol Lett176:403–410[CrossRef]
    [Google Scholar]
  21. Frere J., Novel M., Novel G. 1993; Molecular analysis of the Lactococcus lactis subspecies lactis CNRZ270 bidirectional theta replicating lactose plasmid pUCL22. Mol Microbiol10:1113–1124[CrossRef]
    [Google Scholar]
  22. Gennaro M. L., Kornblum J., Novick R. P. 1987; A site-specific recombination function in Staphylococcus aureus plasmids. J Bacteriol169:2601–2610
    [Google Scholar]
  23. Gilbride K. A., Brunton J. L. 1990; Identification and characterization of a new replication region in the Neisseria gonorrhoeae β-lactamase plasmid pFA3. J Bacteriol172:2439–2446
    [Google Scholar]
  24. Gravesen A., von Wright A., Josephsen J., Vogensen F. K. 1997; Replication regions of two pairs of incompatible lactococcal theta-replicating plasmids. Plasmid38:115–127[CrossRef]
    [Google Scholar]
  25. Greener A., Lehman S. M., Helinski D. R. 1992; Promoters of the broad host range plasmid RK2: analysis of transcription (initiation) in five species of gram-negative bacteria. Genetics130:27–36
    [Google Scholar]
  26. Guzman L. M., Espinosa M. 1997; The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT . J Mol Biol266:688–702[CrossRef]
    [Google Scholar]
  27. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  28. Hirsch P. R., van Montagu M., Johnston A. W. B., Brewin N. J., Schell J. 1980; Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarum . J Gen Microbiol120:403–412
    [Google Scholar]
  29. Jordan S. L., McDonald I. R., Kraczkiewicz-Dowjat A. J., Kelly D. P., Rainey F. A., Murrell J. C., Wood A. P. 1997; Autotrophic growth on carbon disulfide is a property of novel strains of Paracoccus denitrificans . Arch Microbiol168:225–236[CrossRef]
    [Google Scholar]
  30. Kaneko T., Nakamura Y., Wolk C. P.. 19 other authors 2001; Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res8:205–213 227–253[CrossRef]
    [Google Scholar]
  31. Kelly D. P, Rainey F. A., Wood A. P. 2000; The genus Paracoccus . In The Prokaryotes, 3rd edn. Edited by Balows B., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. Springer Verlag Electronic Publication; http://www.springer-ny.com
    [Google Scholar]
  32. Koekman B. P., Hooykaas P. J., Schilperoort R. A. 1982; A functional map of the replicator region of the octopine Ti plasmid. Plasmid7:119–132[CrossRef]
    [Google Scholar]
  33. Koonin E. V., Ilyina T. V. 1993; Computer-assisted dissection of rolling circle DNA replication. Biosystems30:241–268[CrossRef]
    [Google Scholar]
  34. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. 2nd, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. BioTechniques16:800–802
    [Google Scholar]
  35. Kushner S. R. 1978; An improved method for transformation of E. coli with ColE1-derived plasmids. In Genetic Engineering pp17–23 Edited by Boyer H. B., Nicosia S.. Amsterdam: Elsevier;
    [Google Scholar]
  36. McKenzie T., Hoshino T., Tanaka T., Sueoka N. 1986; The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid15:93–103[CrossRef]
    [Google Scholar]
  37. Meijer W. J., Wisman G. B., Terpstra P., Thorsted P. B., Thomas C. M., Holsappel S., Venema G., Bron S. 1998; Rolling-circle plasmids from Bacillus subtilis : complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from gram-positive bacteria. FEMS Microbiol Rev21:337–368[CrossRef]
    [Google Scholar]
  38. Ogata K., Sekizaki T., Aminov R. I., Tajima K., Nakamura M., Nagamine T., Matsui H., Benno Y. 1999; A small cryptic plasmid from Ruminobacter amylophilus NIAH-3 possesses functional mobilization properties. FEMS Microbiol Lett181:41–48[CrossRef]
    [Google Scholar]
  39. Ohara M., Katayama Y., Tsuzaki M., Nakamoto S., Kuraishi H. 1990; Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int J Syst Bacteriol40:292–296[CrossRef]
    [Google Scholar]
  40. Pansegrau W., Schroder W., Lanka E. 1994; Concerted action of three distinct domains in the DNA cleaving–joining reaction catalyzed by relaxase (TraI) of conjugative plasmid RP4. J Biol Chem269:2782–2789
    [Google Scholar]
  41. Pomerantsev A. P., Obuchi M., Ohara Y. 2001; Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis . Plasmid46:86–94[CrossRef]
    [Google Scholar]
  42. Priebe S. D., Lacks S. A. 1989; Region of the streptococcal plasmid pMV158 required for conjugative mobilization. J Bacteriol171:4778–4784
    [Google Scholar]
  43. Projan S. J., Novick R. 1988; Comparative analysis of five related staphylococcal plasmids. Plasmid19:203–221[CrossRef]
    [Google Scholar]
  44. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol49:645–651[CrossRef]
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Shine J., Dalgarno L. 1975; Determination of cistron specificity in bacterial ribosomes. Nature254:34–38[CrossRef]
    [Google Scholar]
  47. Simon R., Priefer V., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology1:784–791[CrossRef]
    [Google Scholar]
  48. Smith C. J., Parker A. C. 1998; The transfer origin for Bacteroides mobilizable transposon Tn 4555 is related to a plasmid family from gram-positive bacteria. J Bacteriol180:435–439
    [Google Scholar]
  49. Spratt B. G., Hedge P. J., te Heesen S., Edelman A., Broome-Smith J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene41:337–342[CrossRef]
    [Google Scholar]
  50. Szpirer C. Y., Faelen M., Couturier M. 2000; Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob. Mol Microbiol37:1283–1292[CrossRef]
    [Google Scholar]
  51. Szpirer C. Y., Faelen M., Couturier M. 2001; Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. J Bacteriol183:2101–2110[CrossRef]
    [Google Scholar]
  52. Thorsted P. B., Thomas C. M., Poluektova E. U., Prozorov A. A. 1999; Complete sequence of Bacillus subtilis plasmid p1414 and comparison with seven other plasmid types found in Russian soil isolates of Bacillus subtilis . Plasmid41:274–281[CrossRef]
    [Google Scholar]
  53. van der Lelie D., Bron S., Venema G., Oskam L. 1989; Similarity of minus origins of replication and flanking open reading frames of plasmids pUB110, pTB913 and pMV158. Nucleic Acids Res17:7283–7294[CrossRef]
    [Google Scholar]
  54. Vedantam G., Novicki T. J., Hecht D. W. 1999; Bacteroides fragilis transfer factor Tn 5520 : the smallest bacterial mobilizable transposon containing single integrase and mobilization genes that function in Escherichia coli . J Bacteriol181:2564–2571
    [Google Scholar]
  55. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene19:259–268[CrossRef]
    [Google Scholar]
  56. Vujcic M., Topisirovic L. 1993; Molecular analysis of the rolling-circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl Environ Microbiol59:274–280
    [Google Scholar]
  57. Wlodarczyk M., Jagusztyn-Krynicka E. K., Bartosik D., Kalinowska I. 1994; Electroporation of Thiobacillus versutus with plasmid DNA. Acta Microbiol Pol43:223–227
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2847
Loading
/content/journal/micro/10.1099/00221287-148-9-2847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error