1887

Abstract

For an economically feasible production of ethanol from plant biomass by microbial cells, the fermentation of xylose is important. As xylose uptake might be a limiting step for xylose fermentation by recombinant xylose-utilizing cells a study of xylose uptake was performed. After deletion of all of the 18 hexose-transporter genes, the ability of the cells to take up and to grow on xylose was lost. Reintroduction of individual hexose-transporter genes in this strain revealed that at intermediate xylose concentrations the yeast high- and intermediate-affinity transporters Hxt4, Hxt5, Hxt7 and Gal2 are important xylose-transporting proteins. Several heterologous monosaccharide transporters from bacteria and plant cells did not confer sufficient uptake activity to restore growth on xylose. Overexpression of the xylose-transporting proteins in a xylose-utilizing PUA yeast strain did not result in faster growth on xylose under aerobic conditions nor did it enhance the xylose fermentation rate under anaerobic conditions. The results of this study suggest that xylose uptake does not determine the xylose flux under the conditions and in the yeast strains investigated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2783
2002-09-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482783a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2783&mimeType=html&fmt=ahah

References

  1. Boles E., Hollenberg C. P. 1997; The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111 [CrossRef]
    [Google Scholar]
  2. Busturia A., Lagunas R. 1986; Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae . J Gen Microbiol 132:152–160
    [Google Scholar]
  3. Büttner M., Sauer N. 2000; Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465263–274 [CrossRef]
    [Google Scholar]
  4. Davis E. O., Henderson P. J. 1987; The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J Biol Chem 262:13928–13932
    [Google Scholar]
  5. Diderich J. A., Schepper M., van Hoek P. 8 other authors 1999; Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359
    [Google Scholar]
  6. Diderich J. A., Merijn Schuurmans J., Van Gaalen M. C., Kruckeberg A. L., Van Dam K. 2001; Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae . Yeast 18:1515–1524 [CrossRef]
    [Google Scholar]
  7. Eliasson A., Christensson C., Wahlbom C. F., Hahn-Hägerdal B. 2000; Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1 , XYL2 , and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386 [CrossRef]
    [Google Scholar]
  8. Hayn M., Steiner W., Klinger R., Steinmüller H., Sinner M., Esterbauer H. 1993; Basic research and pilot plant studies on the enzymatic conversion of lignocellulosics. In Bioconversion of Forest and Agricultural Plant Residues pp 33–72 Edited by Saddler J. N. Wallingford, UK: CAB International;
    [Google Scholar]
  9. Jahn T. P., Schulz A., Taipalensuu J., Palmgren M. G. 2002; Post-translational modification of plant plasma membrane H+-ATPase as a requirement for functional complementation of a yeast transport mutant. J Biol Chem 277:6353–6358 [CrossRef]
    [Google Scholar]
  10. Kötter P., Ciriacy M. 1993; Xylose fermentation by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 38:776–783 [CrossRef]
    [Google Scholar]
  11. Kotyk A. 1967; Mobility of the free and the loaded monosaccharide carrier in Saccharomyces cerevisiae . Biochim Biophys Acta 135:112–119 [CrossRef]
    [Google Scholar]
  12. Krampe S., Stamm O., Hollenberg C. P., Boles E. 1998; Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441:343–347 [CrossRef]
    [Google Scholar]
  13. Lagunas R. 1993; Sugar transport in Saccharomyces cerevisiae . FEMS Microbiol Rev 104:229–242 [CrossRef]
    [Google Scholar]
  14. Lagunas R., Dominguez C., Busturia A., Saez M. J. 1982; Mechanisms of the appearance of the Pasteur effect in Saccharomyces cerevisiae : inactivation of sugar transport systems. J Bacteriol 152:19–25
    [Google Scholar]
  15. Liang H., Gaber R. F. 1996; A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6 . Mol Biol Cell 7:1953–1966 [CrossRef]
    [Google Scholar]
  16. Meinander N. Q., Hahn-Hägerdal B. 1997; Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1 -expressing Saccharomyces cerevisiae : a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 63:1959–1964
    [Google Scholar]
  17. Minet M., Dufour M.-E., Lacroute F. 1992; Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2:417–422
    [Google Scholar]
  18. Mumberg D., Müller R., Funk M. 1994; Regulatable promotors of Saccharomyces cerevisiae : comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768 [CrossRef]
    [Google Scholar]
  19. Özcan S., Johnston M. 1999; Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569
    [Google Scholar]
  20. Porep H. J. 1987 Xyluloseverwertung bei Saccharomyces cerevisiae PhD thesis University of Düsseldorf;
    [Google Scholar]
  21. Reifenberger E., Boles E., Ciriacy M. 1997; Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333 [CrossRef]
    [Google Scholar]
  22. Robl I., Grassl R., Tanner W., Opekarova M. 2000; Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: specific requirement of phosphatidylcholine for permease stability. Biochim Biophys Acta 1463407–418 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schulte F., Wieczorke R., Hollenberg C. P., Boles E. 2000; The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182:540–542 [CrossRef]
    [Google Scholar]
  25. Serrano R, de la Fuente G. 1974; Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae . Mol Cell Biochem 5:161–171 [CrossRef]
    [Google Scholar]
  26. Tantirungkij M., Nakashima N., Seki T., Yoshida T. 1993; Construction of xylose-assimilating Saccharomyces cerevisiae . J Ferm Bioeng 75:83–88 [CrossRef]
    [Google Scholar]
  27. Villalba J. M., Palmgren M. G., Berberian G. E., Ferguson C., Serrano R. 1992; Functional expression of plant plasma membrane H+-ATPase in yeast endoplasmic reticulum. J Biol Chem 267:12341–12349
    [Google Scholar]
  28. von Sivers M., Zacchi G. 1995; A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52 [CrossRef]
    [Google Scholar]
  29. Walfridsson M., Hallborn J., Penttilä M., Keränen S., Hahn-Hägerdal B. 1995; Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190
    [Google Scholar]
  30. Weierstall T., Hollenberg C. P., Boles E. 1999; Cloning and characterization of three genes ( SUT1–3) encoding glucose transporters of the yeast Pichia stipitis . Mol Microbiol 31:871–883 [CrossRef]
    [Google Scholar]
  31. Wieczorke R., Krampe S., Weierstall T., Freidel K., Hollenberg C. P., Boles E. 1999; Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae . FEBS Lett 464:123–128 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-9-2783
Loading
/content/journal/micro/10.1099/00221287-148-9-2783
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error