1887

Abstract

Major differences in evolutionary relationships of the 16S rRNA gene and the nitrogenase α-subunit gene () were observed among 38 strains of sp. nodule bacteria from North America, Central America, Asia and Australia. Two lineages were evident in the 16S rRNA phylogeny representing strains related to (29 isolates) or (9 isolates). Both clades were distributed across most or all of the geographic regions sampled. By contrast, in the tree almost all isolates were placed into one of three groups each exclusively composed of taxa from a single geographic region (North Temperate, Central America or Australia). Isolates that were closely related or identical in gene sequence at one locus often had divergent sequences at the other locus and a partition homogeneity test indicated that the 16S rRNA and phylogenies were significantly incongruent. No evidence for any gene duplication of was found by Southern hybridization analysis on a subset of the strains, so unrecognized paralogy is not likely to be responsible for the discrepancy between 16S rRNA and tree topologies. These results are consistent with a model whereby geographic areas were initially colonized by several diverse 16S rRNA lineages, with subsequent horizontal gene transfer of leading to increased sequence homogeneity within each regional population.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2557
2002-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482557a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2557&mimeType=html&fmt=ahah

References

  1. Barrera L. L., Trujillo M. E., Goodfellow M., Garcia F. J., Hernandez-Lucas I., Davila G., van Berkum P., Martinez-Romero E. 1997; Biodiversity of bradyrhizobia nodulating Lupinus spp. Int J Syst Bacteriol 47:1086–1091 [CrossRef]
    [Google Scholar]
  2. Clark M. A., Moran N. A., Baumann P. 1999; Sequence evolution in bacterial endosymbionts having extreme base composition. Mol Biol Evol 16:1586–1598 [CrossRef]
    [Google Scholar]
  3. Cunningham C. W. 1997; Can three incongruence tests predict when data should be combined?. Mol Biol Evol 14:733–740 [CrossRef]
    [Google Scholar]
  4. Doyle J. J., Davis J. I. 1998; Homology in molecular phylogenetics: a parsimony perspective. In Molecular Systematics of Plants. II. DNA Sequencing pp 101–131 Edited by Soltis D. E., Soltis P. S., Doyle J. J. Boston: Kluwer;
    [Google Scholar]
  5. Doyle J. J., Doyle J. L., Ballenger J. A., Dickson E. E., Kajita T., Ohashi H. 1997; A phylogeny of the chloroplast gene rbc l in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554 [CrossRef]
    [Google Scholar]
  6. Dykhuizen D. E., Green L. 1991; Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268
    [Google Scholar]
  7. Eardly B. D., Wang F.-S., van Berkum P. 1996; Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74 [CrossRef]
    [Google Scholar]
  8. Farris J. S., Kallersjo M., Kluge A. G., Bult C. 1995; Testing significance of incongruence. Cladistics 10:315–319
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Gottfert M. S., Rothlisberger S., Kundig C., Beck C., Marty R., Hennecke H. 2001; Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412 [CrossRef]
    [Google Scholar]
  11. Hasegawa M., Kishino H., Yano T. 1985; Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  12. Haukka K., Lindstrom K., Young J. P. W. 1998; Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426
    [Google Scholar]
  13. Klappenbach J. A., Dunbar J. M., Schmidt T. M. 2000; rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333 [CrossRef]
    [Google Scholar]
  14. Kundig C., Hennecke H., Gottfert M. 1993; Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 175:613–622
    [Google Scholar]
  15. Kundig C., Beck C., Hennecke H., Gottfert M. 1995; A single rRNA gene region in Bradyrhizobium japonicum . J Bacteriol 177:5151–5154
    [Google Scholar]
  16. Kuykendall D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505 [CrossRef]
    [Google Scholar]
  17. Lafay B., Burdon J. J. 1998; Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Appl Environ Microbiol 64:3989–3997
    [Google Scholar]
  18. Lafay B., Burdon J. J. 2001; Small-subunit rRNA genotyping of rhizobia nodulating Australian Acacia spp. Appl Environ Microbiol 67:396–402 [CrossRef]
    [Google Scholar]
  19. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N. 2001; Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993
    [Google Scholar]
  20. Maddison W. P., Slatkin M. 1991; Null models for the number of evolutionary steps in a character on a phylogenetic tree. Evolution 45:1184–1197 [CrossRef]
    [Google Scholar]
  21. Parker M. A. 1999; Relationships of bradyrhizobia from the legumes Apios americana and Desmodium glutinosum . Appl Environ Microbiol 65:4914–4920
    [Google Scholar]
  22. Parker M. A. 2000; Divergent Bradyrhizobium symbionts on Tachigali versicolor from Barro Colorado Island, Panama. Syst Appl Microbiol 23:585–590 [CrossRef]
    [Google Scholar]
  23. Parker M. A. 2001; Case of localized recombination in 23S rRNA genes from divergent Bradyrhizobium lineages associated with neotropical legumes. Appl Environ Microbiol 67:2076–2082 [CrossRef]
    [Google Scholar]
  24. Parker M. A., Lunk A. 2000; Relationships of bradyrhizobia from Platypodium and Machaerium (Papilionoideae tribe Dalbergieae) on Barro Colorado Island, Panama. Int J Syst Evol Microbiol 50:1179–1186 [CrossRef]
    [Google Scholar]
  25. Qian J., Parker M. A. 2002; Contrasting nifD and ribosomal gene relationships among Mesorhizobium from Lotus oroboides in northern Mexico. Syst Appl Microbiol in press
    [Google Scholar]
  26. Rigottier-Gois L., Turner S. L., Young J. P. W., Amarger N. 1998; Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology 144:771–780 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116 [CrossRef]
    [Google Scholar]
  29. Slatkin M., Maddison W. P. 1989; A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:603–613
    [Google Scholar]
  30. Spratt B. G., Maiden M. C. J. 1999; Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B 354:701–710 [CrossRef]
    [Google Scholar]
  31. Sullivan J. T., Ronson C. W. 1998; Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149 [CrossRef]
    [Google Scholar]
  32. Sullivan J. T., Patrick H. N., Lowther W. L., Scott D. B., Ronson C. W. 1995; Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8885–8889
    [Google Scholar]
  33. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . Appl Environ Microbiol 62:2818–2825
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  35. Turner S. L., Young J. P. W. 2000; The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319 [CrossRef]
    [Google Scholar]
  36. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177:468–472
    [Google Scholar]
  37. van Berkum P., Fuhrmann J. J. 2000; Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 50:2165–2172 [CrossRef]
    [Google Scholar]
  38. van Berkum P., Ruihua F., Campbell T. A., Eardly B. D. 1998; Some issues of relevance in the taxonomy of rhizobia. In Proceedings of the 16th North American Conference on Symbiotic Nitrogen Fixation pp 1–5 Cancun, Mexico:
    [Google Scholar]
  39. Wang Y., Zhang Z. 2000; Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146:2845–2854
    [Google Scholar]
  40. Wendel J. F., Doyle J. J. 1998; Phylogenetic incongruence: window into genome history and molecular evolution. In Molecular Systematics of Plants. II. DNA Sequencing pp 265–296 Edited by Soltis D. E., Soltis P. S., Doyle J. J. Boston: Kluwer;
    [Google Scholar]
  41. Wernegreen J. J., Riley M. A. 1999; Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113 [CrossRef]
    [Google Scholar]
  42. Wernegreen J. J., Harding E. E., Riley M. A. 1997; Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum . Proc Natl Acad Sci USA 94:5483–5488 [CrossRef]
    [Google Scholar]
  43. Werren J. H., Zhang W., Guo L. R. 1995; Evolution and phylogeny of Wolbachia : reproductive parasites of arthropods. Proc R Soc Lond B 261:55–71 [CrossRef]
    [Google Scholar]
  44. Willems A., Coopman R., Gillis M. 2001; Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117
    [Google Scholar]
  45. Wilson J. K. 1934; Longevity of Rhizobium japonicum in relation to its symbiont on the soil. Cornell Univ Agric Exp Stn Mem 162:1–11
    [Google Scholar]
  46. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  47. Xu L. M., Ge C., Cui Z., Li J., Fan H. 1995; Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711 [CrossRef]
    [Google Scholar]
  48. Yap W. H., Zhang Z., Wang Y. 1999; Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209
    [Google Scholar]
  49. Young J. P. W., Wexler M. 1988; Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum . J Gen Microbiol 134:2731–2739
    [Google Scholar]
  50. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94 [CrossRef]
    [Google Scholar]
  51. Zhou J., Bowler L. D., Spratt B. G. 1997; Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol 23:799–812 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2557
Loading
/content/journal/micro/10.1099/00221287-148-8-2557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error